【題目】計算:

(1)2﹣13+8;

(2)2+(﹣6)÷2×;

(3)5×22﹣3÷(﹣);

(4)﹣42+(﹣9)×[(﹣2)3+]

【答案】(1)-3;(2);(3)29;(4)41.

【解析】

(1)根據(jù)有理數(shù)的加減法可以解答本題;

(2)根據(jù)有理數(shù)的乘除法和加法可以解答本題;

(3)根據(jù)有理數(shù)的乘除法和減法可以解答本題;

(4)根據(jù)有理數(shù)的乘除法和加法可以解答本題.

解:(1)2﹣13+8

=2+(﹣13)+8

=﹣3;

(2)2+(﹣6)÷2×

=2+(﹣6)××

=2+(﹣

=;

(3)5×22﹣3÷(﹣

=5×4﹣3×(﹣3)

=20+9

=29;

(4)﹣42+(﹣9)×[(﹣2)3+]

=﹣16+(﹣9)×[(﹣8)+]

=﹣16+72+(﹣15)

=41.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,∠MON=45°,點P是∠MON內一點,過點P作PA⊥OM于點A、PB⊥ON于點B,且PB=2 .取OP的中點C,聯(lián)結AC并延長,交OB于點D.

(1)求證:∠ADB=∠OPB;
(2)設PA=x,OD=y,求y關于x的函數(shù)解析式;
(3)分別聯(lián)結AB、BC,當△ABD與△CPB相似時,求PA的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c的象經(jīng)過A(﹣1,0)、B(3,0)、N(2,3)三點,且與y軸交于點C.

(1)求這個二次函數(shù)的解析式,并寫出頂點M及點C的坐標;
(2)若直線y=kx+d經(jīng)過C、M兩點,且與x軸交于點D,試證明四邊形CDAN是平行四邊形;
(3)點P是這個二次函數(shù)的對稱軸上一動點,請?zhí)剿鳎菏欠翊嬖谶@樣的點P,使以點P為圓心的圓經(jīng)過A、B兩點,并且與直線CD相切?如果存在,請求出點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】寒假結束了,為了了解九年級學生寒假體育鍛煉情況,王老師調查了九年級所有學生寒假體育鍛煉時間,并隨即抽取10名學生進行統(tǒng)計,制作出如下統(tǒng)計圖表:

編號

成績

編號

成績

B

A

A

B

B

C

B

B

C

A

根據(jù)統(tǒng)計圖表信息解答下列問題:

(1)將條形統(tǒng)計圖補充完整;
(2)若用扇形統(tǒng)計圖來描述10名學生寒假體育鍛煉情況,分別求A,B,C三個等級對應的扇形圓心角的度數(shù);
(3)已知這次統(tǒng)計中共有60名學生寒假體育鍛煉時間是A等,請你估計這次統(tǒng)計中B等,C等的學生各有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,且拋物線經(jīng)過A(1,0),C(0,3)兩點,與x軸交于點B.

(1)若直線y=mx+n經(jīng)過B、C兩點,求直線BC和拋物線的解析式;
(2)在拋物線的對稱軸x=﹣1上找一點M,使點M到點A的距離與到點C的距離之和最小,求出點M的坐標;
(3)設點P為拋物線的對稱軸x=﹣1上的一個動點,求使△BPC為直角三角形的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點MCD邊上,點N在正方形ABCD外部,且滿足∠CMN=90°,CM=MN.連接AN,CN,取AN的中點E,連接BE,AC,交于F點.

(1) ①依題意補全圖形;

②求證:BEAC.

(2)請?zhí)骄烤段BE,AD,CN所滿足的等量關系,并證明你的結論.

(3)設AB=1,若點M沿著線段CD從點C運動到點D,則在該運動過程中,線段EN所掃過的面積為______________(直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市種植某種綠色蔬菜,全部用來出口.為了擴大出口規(guī)模,該市決定對這種蔬菜的種植實行政府補貼,規(guī)定每種植﹣畝這種蔬菜一次性補貼菜農(nóng)若干元.經(jīng)調查,種植畝數(shù)y(畝)與補貼數(shù)額x(元)之間大致滿足如圖1所示的一次函數(shù)關系.隨著補貼數(shù)額x的不斷增大,出口量也不斷增加,但每畝蔬菜的收益z(元)會相應降低,且z與x之間也大致滿足如圖2所示的一次函數(shù)關系.
(1)在政府未出臺補貼措施前,該市種植這種蔬菜的總收益額為多少?
(2)分別求出政府補貼政策實施后,種植畝數(shù)y和每畝蔬菜的收益z與政府補貼數(shù)額x之間的函數(shù)關系式;
(3)要使全市這種蔬菜的總收益w(元)最大,政府應將每畝補貼數(shù)額x定為多少?并求出總收益w的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本小題滿分9分)如圖,四邊形ABCDAB∥CD,AB≠CD,BD=AC

1)求證:AD=BC;

2)若EF,G,H分別是ABCD,AC,BD的中點,求證:線段EF與線段GH互相垂直平分。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y= x2﹣2x﹣6 與x軸交于A,B兩點(點A在點B左側),與y軸交于點C,點D為頂點,點E在拋物線上,且橫坐標為4 ,AE與y軸交F.

(1)求拋物線的頂點D和F的坐標;
(2)點M,N是拋物線對稱軸上兩點,且M(2 ,a),N(2 ,a+ ),是否存在a使F,C,M,N四點所圍成的四邊形周長最小,若存在,求出這個周長最小值,并求出a的值;
(3)連接BC交對稱軸于點P,點Q是線段BD上的一個動點,自點D以2 個單位每秒的速度向終點B運動,連接PQ,將△DPQ沿PQ翻折,點D的對應點為D′,設Q點的運動時間為t(0≤t≤ )秒,求使得△D′PQ與△PQB重疊部分的面積為△DPQ面積的 時對應的t值.

查看答案和解析>>

同步練習冊答案