【題目】在平面直角坐標系xOy中,拋物線C1:y=mx2﹣2mx+m+4與y軸交于點A(0,3),與x軸交于點B、C(點B在點C左側(cè)).
(1)求該拋物線的解析式;
(2)求點B的坐標;
(3)若拋物線C2:y=a(x﹣1)2﹣1(a≠0)與線段AB恰有一個公共點,結(jié)合函數(shù)的圖象,求a的取值范圍.
【答案】(1)y=﹣x2+2x+3;(2)B(﹣1,0);(3)a的取值范圍為≤a≤4.
【解析】
(1)直接把點A的坐標代入y=mx2﹣2mx+m+4得m+4=3,然后求出m的值即可得到拋物線的解析式;
(2)利用拋物線與x軸的交點問題,通過解方程x2+2x+3=0可得到B點坐標;
(3)拋物線y=a(x﹣1)2﹣1(a≠0)的頂點坐標為(1,﹣1),則開口向上,根據(jù)二次函數(shù)的性質(zhì),拋物線C2與線段AB的公共點為B點時,a最;當拋物線C2與線段AB的公共點為A點時,a最大,然后把A、B兩點的坐標分別代入計算出對應的a的值,從而可確定a的取值范圍.
(1)把A(0,3)代入y=mx2﹣2mx+m+4得m+4=3,解得m=﹣1,
所以拋物線的解析式為y=﹣x2+2x+3;
(2)當y=0時,﹣x2+2x+3=0,解得x1=﹣1,x2=3,
所以B(﹣1,0);
(3)拋物線C2:y=a(x﹣1)2﹣1(a≠0)的頂點坐標為(1,﹣1),
因為拋物線C2與線段AB恰有一個公共點,則開口向上,
當拋物線C2與線段AB的公共點為B點時,a最小,把B(﹣1,0)代入y=a(x﹣1)2﹣1得4a﹣1=0,解得a=;
當拋物線C2與線段AB的公共點為A點時,a最大,把A(0,3)代入y=a(x﹣1)2﹣1得a﹣1=3,解得a=4,
所以a的取值范圍為≤a≤4.
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2+bx+c的圖象經(jīng)過點(4,3),(3,0).
(1)求b、c的值;
(2)求出該二次函數(shù)圖象的頂點坐標和對稱軸,并在所給坐標系中畫出該函數(shù)的圖象;
(3)該函數(shù)的圖象經(jīng)過怎樣的平移得到y=x2的圖象?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校就“遇見路人摔倒后如何處理”的問題,隨機抽取該校部分學生進行問卷調(diào)查,圖1和圖2是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計圖. 請根據(jù)圖中提供的信息,解答下列問題:
(1)該校隨機抽查了 名學生?請將圖1補充完整;
(2)在圖2中,“視情況而定”部分所占的圓心角是 度;
(3)在這次調(diào)查中,甲、乙、丙、丁四名學生都選擇“馬上救助”,現(xiàn)準備從這四人中隨機抽取兩人進行座談,試用列表或樹形圖的方法求抽取的兩人恰好是甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,雙曲線y=(k≠0)與直線y=的交點為A(a,﹣1),B(2,b)兩點,雙曲線上一點P的橫坐標為1,直線PA,PB與x軸的交點分別為點M,N,連接AN.
(1)直接寫出a,k的值;
(2)求證:PM=PN,PM⊥PN.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的解析式是y=x2﹣2x﹣3.
(1)與y軸的交點坐標是 ,頂點坐標是 .
(2)在坐標系中利用描點法畫出此拋物線;
x | … | … | |||||
y | … | … |
(3)結(jié)合圖象回答:當﹣2<x<2時,函數(shù)值y的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形中,, 是的中點.點以每秒1個單位長度的速度從點出發(fā),沿向點運動;點同時以每秒3個單位長度的速度從 點出發(fā),沿向點運動.點停止運動時,點也隨之停止運動.當運動時間秒時,以點為頂點的四邊形是平行四邊形.則的值為_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,對于P,Q兩點給出如下定義:若點P到兩坐標軸的距離之和等于點Q到兩坐標軸的距離之和,則稱P,Q兩點為同族點.下圖中的P,Q兩點即為同族點.
(1)已知點A的坐標為(,1),
①在點R(0,4),S(2,2),T(2, )中,為點A的同族點的是 ;
②若點B在x軸上,且A,B兩點為同族點,則點B的坐標為 ;
(2)直線l: ,與x軸交于點C,與y軸交于點D,
①M為線段CD上一點,若在直線上存在點N,使得M,N兩點為同族點,求n的取值范圍;
②M為直線l上的一個動點,若以(m,0)為圓心, 為半徑的圓上存在點N,使得M,N兩點為同族點,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一輛客車從甲地開往乙地,一輛出租車從乙地開往甲地,兩車同時出發(fā),設客車離甲地的距離為千米,出租車離甲地的距離為千米,兩車行駛的時間為小時,、關于的函數(shù)圖像如圖所示:
(1)根據(jù)圖像,求出、關于的函數(shù)關系式;
(2)設兩車之間的距離為千米.
①求兩車相遇前關于的函數(shù)關系式;
②求出租車到達甲地后關于的函數(shù)關系式;
(3)甲、乙兩地間有、兩個加油站,相距200千米,若客車進入加油站時,出租車恰好進入加油站,求加油站離甲地的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一張直角三角形ABC紙片沿斜邊AB上的中線CD剪開,得到△ACD,再將△ACD沿DB方向平移到△A′C′D′的位置,若平移開始后點D′未到達點B時,A′C′交CD于E,D′C′交CB于點F,連接EF,當四邊形EDD′F為菱形時,試探究△A′DE的形狀,并判斷△A′DE與△EFC′是否全等?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com