在圖1中,正方形ABCD的邊長為a,等腰直角三角形FAE的斜邊AE=2b,且邊AD和AE在同一直線上.
操作示例
當2b<a時,如圖1,在BA上選取點G,使BG=b,連結FG和CG,裁掉△FAG和△CGB并分別拼接到△FEH和△CHD的位置構成四邊形FGCH.
思考發(fā)現
小明在操作后發(fā)現:該剪拼方法就是先將△FAG繞點F逆時針旋轉90°到△FEH的位置,易知EH與AD在同一直線上.連結CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,從而又可將△CGB繞點C順時針旋轉90°到△CHD的位置.這樣,對于剪拼得到的四邊形FGCH(如圖1),過點F作FM⊥AE于點M(圖略),利用SAS公理可判斷△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.進而根據正方形的判定方法,可以判斷出四邊形FGCH是正方形.
實踐探究
(1)正方形FGCH的面積是________;(用含a,b的式子表示)
(2)類比圖1的剪拼方法,請你就圖圖4的三種情形分別畫出剪拼成一個新正方形的示意圖.
聯想拓展
小明通過探究后發(fā)現:當b≤a時,此類圖形都能剪拼成正方形,且所選取的點G的位置在BA方向上隨著b的增大不斷上移.當b>a時(如圖),能否剪拼成一個正方形?若能,請你在圖中畫出剪拼成的正方形的示意圖;若不能,簡要說明理由.
科目:初中數學 來源: 題型:
5 |
2 |
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源:2012-2013學年吉林鎮(zhèn)賚鎮(zhèn)賚鎮(zhèn)中學九年級下第一次綜合測試數學試卷(帶解析) 題型:解答題
在正方形ABCD中,過點A引射線AH,交邊CD于點H(點H與點D不重合).通過翻折,使點B落在射線AH上的點G處,折痕AE交BC于E,延長EG交CD于F.
【感知】如圖1,當點H與點C重合時,可得FG=FD.
【探究】如圖2,當點H為邊CD上任意一點時,猜想FG與FD的數量關系,并說明理由.
【應用】在圖2中,當AB=5,BE=3時,利用探究結論,求FG的長.
查看答案和解析>>
科目:初中數學 來源:2012屆河北石家莊初中畢業(yè)班教學質量檢測數學試卷(帶解析) 題型:解答題
如圖12所示的8×8網格中,每個小正方形邊長均為1,以這些小正方形的頂點為頂點的三角形稱為格點三角形
【小題1】在圖12中以線段AB為一邊,點P為頂點且面積為6的格點三角形共有 個;
【小題2】請你選擇(1)中的一個點P為位似中心,在圖12中畫出格點△A′B′P,使
△ABP與△A′B′P的位似比為2:1
【小題3】求tan∠PB′A′的值.
查看答案和解析>>
科目:初中數學 來源:2013屆吉林鎮(zhèn)賚鎮(zhèn)賚鎮(zhèn)中學九年級下第一次綜合測試數學試卷(解析版) 題型:解答題
在正方形ABCD中,過點A引射線AH,交邊CD于點H(點H與點D不重合).通過翻折,使點B落在射線AH上的點G處,折痕AE交BC于E,延長EG交CD于F.
【感知】如圖1,當點H與點C重合時,可得FG=FD.
【探究】如圖2,當點H為邊CD上任意一點時,猜想FG與FD的數量關系,并說明理由.
【應用】在圖2中,當AB=5,BE=3時,利用探究結論,求FG的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com