如圖,點(diǎn)M、E分別在正方形ABCD的邊AB、BC上,以M為圓心,ME的長為半徑畫弧,交AD邊于點(diǎn)F.當(dāng)
∠EMF=90°時(shí),求證:AF=BM.

【答案】分析:求簡單的線段相等,可證線段所在的三角形全等,本題可通過證△AMF≌△BEM,來得出AF=BM的結(jié)論.
解答:證明:∵四邊形ABCD為正方形,
∴∠A=∠B=90°;(1分)
∴∠1+∠2=90°;
∵∠EMF=90°,
∴∠1+∠3=90°;
∴∠2=∠3;(2分)
∵E、F兩點(diǎn)在⊙M上,
∴MF=ME(3分)
在△AMF和△BEM中,
∴△AMF≌△BEM;(4分)
∴AF=BM.(5分)
點(diǎn)評(píng):三角形全等的判定是中考的熱點(diǎn),一般以考查三角形全等的方法為主,要判定兩個(gè)三角形全等,先根據(jù)已知條件或求證的結(jié)論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)D、E分別在△ABC的邊上AB、AC上,且∠AED=∠ABC,若DE=3,BC=6,AB=8,則AE的長為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)A,B分別在一次函數(shù)y=x,y=8x的圖象上,其橫坐標(biāo)分別為a,b (a>0,b>0 ).若直線AB為一次函數(shù)y=kx+m的圖象,則當(dāng)
b
a
是整數(shù)時(shí),滿足條件的整數(shù)k的值共有( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖,點(diǎn)M、N分別在正三角形ABC的BC、CA邊上,且BM=CN,AM、BN交于點(diǎn)Q,求∠AQN的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、如圖,點(diǎn)D、E分別在∠BAC的邊上,連接DC、BE,若∠B=∠C,那么補(bǔ)充下列一個(gè)條件后,仍無法判定△ABE≌△ACD的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)A、B分別在直線l1、l2上,過點(diǎn)A作到l2的距離AM,過點(diǎn)B作直線l3∥l1

查看答案和解析>>

同步練習(xí)冊(cè)答案