【題目】一副直角三角尺如圖①疊放,現(xiàn)將45°的三角尺ADE固定不動,將含30°的三角尺ABC繞頂點A順時針轉(zhuǎn)動,要求兩塊三角尺的一組邊互相平行.如圖②,當(dāng)∠BAD=15°時,有一組邊BCDE,請再寫出兩個符合要求的∠BAD<∠BAD180°)的度數(shù)_________.

【答案】45°60,105°135°

【解析】

分情況討論ABDE的情況,即可得到答案.

1

∵∠BAD=45°,∠BAC=90°
∴∠CAF=45°,
∴∠D=CAF=45°,
DEAC;
2)如圖所示,


當(dāng)∠BAD=60°時,
∴∠B=BAD=60°
BCAD
3)當(dāng)∠BAD=105°時,如圖,


即∠BAD=BAE+EAD=105°
∴∠BAE=BAD-EAD=105°-45°=60°,
∴∠BAE=B=60°,
BCAE;
4)當(dāng)∠BAD=135°時,如圖,


則∠EAB=BAD-EAD=135°-45°=90°.
∴∠EAB=E=90°
ABDE.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,E,F□ABCD 的對角線BD上的兩點,且BE=DF

求證:AE∥CF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=-x2bxcx軸負(fù)半軸交于點A,與y軸正半軸交于點B,且OAOB.

1)求bc的值;

2)若點C在拋物線上,且四邊形OABC是平行四邊形,求拋物線的解析式;

3)在(2)條件下,點P(不與A,C重合)是拋物線上的一點,點My軸上一點,當(dāng)BPM是等腰直角三角形時,直接寫出點M的坐標(biāo)..

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(6分)如圖:在平面直角坐標(biāo)系中,網(wǎng)格中每一個小正方形的邊長為1個單位長度;已知△ABC.

(1)作出△ABC以O(shè)為旋轉(zhuǎn)中心,順時針旋轉(zhuǎn)90°的△A1B1C1,(只畫出圖形).

(2)作出△ABC關(guān)于原點O成中心對稱的△A2B2C2,(只畫出圖形),寫出B2和C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一根長的金屬棒,欲將其截成長的小段和長的小段,剩余部分作廢料處理,若使廢料最少,則正整數(shù)應(yīng)分別為( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.

1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);

2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交ABAC于點MN,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結(jié)AP并延長交BC于點D,則下列說法中正確的個數(shù)是( .

①作出AD的依據(jù)是SAS;②∠ADC=60°

③點DAB的中垂線上;④SDACSABD=12

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B、C、D為矩形的4個頂點,AB=16cm,BC=6cm,動點P、Q分別從點A、C同時出發(fā),點P以3 cm/s的速度向點B移動,一直到達點B為止;點Q以2 cm/s的速度向點D移動。經(jīng)過長時間P、Q兩點之間的距離是10 cm?(8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在的正方形網(wǎng)格中,每個小正方形的邊長均為1,,均在格點上,完成下列問題:

1)四邊形周長是 ;

2)四邊形面積是 ;

3)求的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案