【題目】如圖,四邊形ABCD中,∠B=90°,AB∥CD,M為BC邊上的一點,且AM平分∠BAD,DM平分∠ADC.求證:
(1)AM⊥DM;
(2)M為BC的中點.
【答案】
(1)解:∵AB∥CD,
∴∠BAD+∠ADC=180°,
∵AM平分∠BAD,DM平分∠ADC,
∴2∠MAD+2∠ADM=180°,
∴∠MAD+∠ADM=90°,
∴∠AMD=90°,
即AM⊥DM
(2)解:作NM⊥AD交AD于N,
∵∠B=90°,AB∥CD,
∴BM⊥AB,CM⊥CD,
∵AM平分∠BAD,DM平分∠ADC,
∴BM=MN,MN=CM,
∴BM=CM,
即M為BC的中點.
【解析】(1)根據平行線的性質得到∠BAD+∠ADC=180°,根據角平分線的定義得到∠MAD+∠ADM=90°,根據垂直的定義得到答案;(2)作NM⊥AD,根據角平分線的性質得到BM=MN,MN=CM,等量代換得到答案.
【考點精析】利用角平分線的性質定理對題目進行判斷即可得到答案,需要熟知定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上.
科目:初中數學 來源: 題型:
【題目】某校為更好地開展“傳統(tǒng)文化進校園”活動,隨機抽查了部分學生,了解他們最喜愛的傳統(tǒng)文化項目類型(分為書法、圍棋、戲劇、國畫共4類),并將統(tǒng)計結果繪制成如圖不完整的頻數分布表及頻數分布直方圖.
最喜愛的傳統(tǒng)文化項目類型頻數分布表
根據以上信息完成下列問題:
(1)直接寫出頻數分布表中a的值;
(2)補全頻數分布直方圖;
(3)若全校共有學生1500名,估計該校最喜愛圍棋的學生大約有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列運算正確的是( )
A.3a3+ a 3=4 a 6B.( a +b)2= a 2+b2C.5 a-5 a =0 D.(-a)2·a 3=-a 6
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小麗媽媽在網上做淘寶生意,專門銷售女式鞋子,一次,小麗發(fā)現(xiàn)一個進貨單上的一個信息是:A款鞋的進價比B款鞋進價多20元,花500元進A款鞋的數量和花400元進B款鞋的數量相同.
(1)問A、B款鞋的進價分別是多少元?
(2)小麗在銷售單上記錄了兩天的數據如表:
日期 | A款女鞋銷量 | B款女鞋銷量 | 銷售總額 |
6月1日 | 12雙 | 8雙 | 2240元 |
6月2日 | 8雙 | 10雙 | 1960元 |
請問兩種鞋的銷售價分別是多少?
(3)小麗媽媽說:“兩款鞋的利潤率相同”,請通過計算,結合(1)(2)所給信息,判斷小麗媽媽的說法是否正確,如果正確,請說明理由;如果錯誤,能否只調整其中一款的售價,使得兩款鞋的利潤率相同?能否同時調整兩款的售價,使得兩款鞋的利潤率相同?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(已知),
且∠1=∠CGD(_______)
∴∠2=∠CGD(等量代換)
∴CE∥BF(_______)
∴∠_____=∠BFD(_______)
又∵∠B=∠C(已知)
∴∠BFD=∠B(等量代換)
∴AB∥CD(_______)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(10分)漳州市某中學對全校學生進行文明禮儀知識測試,為了解測試結果,隨機抽取部分學生的成績進行分析,將成績分為三個等級:不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計圖(不完整).請你根據圖中所給的信息解答下列問題:
(1)請將以上兩幅統(tǒng)計圖補充完整;
(2)若“一般”和“優(yōu)秀”均被視為達標成績,則該校被抽取的學生中有 人達標;
(3)若該校學生有1200人,請你估計此次測試中,全校達標的學生有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E是AB的中點,連接DE并延長交CB的延長線于點F,點M在BC邊上,且∠MDF=∠ADF.
(1)求證:△ADE≌△BFE.
(2)如果FM=CM,求證:EM垂直平分DF.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com