在Rt△ABC中,∠C=90°,AC=3,BC=4,AB=5.
(Ⅰ)探究新知:
如圖① ⊙O是△ABC的內切圓,與三邊分別相切于點E、F、G..
(1)求證內切圓的半徑r1=1;
(2)求tan∠OAG的值;
(Ⅱ)結論應用
(1)如圖②若半徑為r2的兩個等圓⊙O1、⊙O2外切,且⊙O1與AC、AB相切,⊙O2與BC、AB相切,求r2的值;
(2)如圖③若半徑為rn的n個等圓⊙O1、⊙O2、…、⊙On依次外切,且⊙O1與AC、AB相切,⊙On與BC、AB相切,⊙O1、⊙O2、…、⊙On均與AB相切,求rn的值.
(Ⅰ)探究新知(1)證明見解析(2)1/2(Ⅱ)結論應用(1)(2)
【解析】解:(Ⅰ)(1)證明:在圖①中,連接OE,OF。
∵點E、F、G是⊙O的切點
∴四邊形CEOF是正方形, CE=CF=r1。
又∵AC=3,BC=4,AB=5,
∴AG=AE=3-r1,BG=BF=4-r1,AG+BG=5。
∴(3-r1)+(4-r1)=5,解得r1=1。
(2)連接OG,OA在Rt△AOG中,∵OG=r1=1, AG= 3-r1=2,
∴tan∠OAG=。
(Ⅱ)
(1)連接O1A、O2B,作O1D⊥AB交于點D、O2E⊥AB交于點E。
則 AO1、BO2分別平分∠CAB、∠ABC。
由(Ⅰ)tan∠OAG=,知tan∠O1AD=
,
同理可得:tan∠O2BE=。
∴AD=2r2,DE=2r2,BE=3r2。
∵AD+DE+BE=5,∴。
(2)如圖③,
連接O1A、OnB,作O1D⊥AB交于點D、O2E⊥AB交于點E、…、OnF⊥AB交于點F。 則AO1、BO2分別平分∠CAB、∠ABC。
tan∠O1AD=,tan∠OnBF=
,
∴AD=2rn,DE=2rn,…,FB=3rn。
又∵AD+DE+…+FB=5,2rn+2rn+…+3rn=5,即(2n+3) rn=5,
∴。
(Ⅰ)(1)由切線的性質可得四邊形CEOF是正方形,從而由AG=AE=3-r1,BG=BF=4-r1,AG+BG=5可證得內切圓的半徑r1=1。
(2)根據銳角三角函數定義直接求得。
(Ⅱ)(1)由(Ⅰ)的結論得tan∠O1AD=,同理可推得tan∠O2BE=
,從而由AD=2r2,DE=2r2,BE=3r2和AD+DE+BE=5可求得r2的值。
(2)由(Ⅱ)(1)有tan∠O1AD=,tan∠OnBF=
,從而由AD=2rn,DE=2rn,…,FB=3rn和AD+DE+…+FB=5,2rn+2rn+…+3rn=5可求得rn的值。
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com