現(xiàn)有一個(gè)長(zhǎng)為2米的長(zhǎng)方形鐵片,要把它制成一個(gè)開(kāi)口的水槽.
(1)方案甲,如果做成一個(gè)底邊長(zhǎng)為1米,兩邊高都為0.5米開(kāi)口長(zhǎng)方形水槽,求水槽的橫截面面積.
(2)方案乙,如圖把鐵片制成等腰梯形水槽,使∠ABC=∠BCD=120°.設(shè)BC=2xcm,梯形ABCD(水槽的橫截面)的面積為ycm2,試寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式以及自變量x的取值范圍,并求出y的最大值;
(3)你能找到一種使水槽的橫截面面積比方案乙中的y更大的設(shè)計(jì)方案嗎?若能,請(qǐng)畫(huà)出圖形,標(biāo)出必要的數(shù)據(jù)(可不寫(xiě)解答過(guò)程),寫(xiě)出你所設(shè)計(jì)方案的橫截面面積;若不能,請(qǐng)說(shuō)明理由.
(1)S=1×0.5=0.5m2;

(2)AB=CD=
200-2x
2
=100-x
,
梯形ABCD的高為h=
3
2
(100-x)
.y=-
3
3
4
(x-
100
3
)2+
10000
3
3

故當(dāng)x=
100
3
時(shí),即AB=BC=CD=
200
3
時(shí),
水槽的橫截面積y的最大值為
10000
3
3
cm2
;

(3)能,可增加多邊形邊數(shù),或設(shè)計(jì)為半圓.
設(shè)計(jì)成半圓弧最佳,此時(shí)水槽的橫截面積最大,
最大面積為:
1
2
π(
200
π
)2
6369.43cm2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,有一個(gè)橫截面是拋物線(xiàn)的運(yùn)河,一次,運(yùn)河管理員將一根長(zhǎng)6m的鋼管(AB)一端在運(yùn)河底部A點(diǎn),另一端露出水面并靠在運(yùn)河邊緣的B點(diǎn),發(fā)現(xiàn)鋼管4m浸沒(méi)在水中(AC=4米),露出水面部分的鋼管BC與水面部分的鋼管BC與水面成30°的夾角(鋼管與拋物線(xiàn)的橫截面在同一平面內(nèi))
(1)以水面所在直線(xiàn)為x軸,建立如圖所示的直角坐標(biāo)系,求該運(yùn)河橫截面的拋物線(xiàn)解析式;
(2)若有一艘貨船從當(dāng)中通過(guò),已知貨船底部最寬處為12米,吃水深(即船底與水面的距離)為1米,此時(shí)貨船是否能安全通過(guò)該運(yùn)河?若能,請(qǐng)說(shuō)明理由;若不能,則需上游開(kāi)閘放水提高水位,當(dāng)水位上升多少米時(shí),貨船能順利通過(guò)運(yùn)河?(船與河床之間的縫隙忽略不計(jì))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,頂點(diǎn)為A的拋物線(xiàn)y=a(x+2)2-4交x軸于點(diǎn)B(1,0),連接AB,過(guò)原點(diǎn)O作射線(xiàn)OMAB,過(guò)點(diǎn)A作ADx軸交OM于點(diǎn)D,點(diǎn)C為拋物線(xiàn)與x軸的另一個(gè)交點(diǎn),連接CD.
(1)求拋物線(xiàn)的解析式(關(guān)系式);
(2)求點(diǎn)A,B所在的直線(xiàn)的解析式(關(guān)系式);
(3)若動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿著射線(xiàn)OM運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒,問(wèn):當(dāng)t為何值時(shí),四邊形ABOP分別為平行四邊形?等腰梯形?
(4)若動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿線(xiàn)段OD向點(diǎn)D運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿線(xiàn)段CO向點(diǎn)O運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí)另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)它們的運(yùn)動(dòng)時(shí)間為t秒,連接PQ.問(wèn):當(dāng)t為何值時(shí),四邊形CDPQ的面積最小?并求此時(shí)PQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

拋物線(xiàn)y=-x2+bx+c的圖象如圖所示,則此拋物線(xiàn)的解析式為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2口口少•荊門(mén))9開(kāi)4向上4拋物線(xiàn)與x軸交于g(m-2,口),B(m+2,口)兩點(diǎn),記拋物線(xiàn)頂點(diǎn)為C,且gC⊥BC.
(你)若m為常數(shù),求拋物線(xiàn)4解析式;
(2)若m為小于口4常數(shù),那么(你)中4拋物線(xiàn)經(jīng)過(guò)怎么樣4平移可以使頂點(diǎn)在坐標(biāo)原點(diǎn);
(右)設(shè)拋物線(xiàn)交三軸正半軸于下點(diǎn),問(wèn)是否存在實(shí)數(shù)m,使得△BO下為等腰三角形?若存在,求出m4值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在矩形ABCD中,AB=a,BC=b,
b
3
≤a≤3b
,AE=AH=CF=CG,則四邊形EFGH的面積的最大值是( 。
A.
1
16
(a+b)2
B.
1
8
(a+b)2
C.
1
4
(a+b)2
D.
1
2
(a+b)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,某灌溉設(shè)備的噴頭B高出地面1.25m,噴出的拋物線(xiàn)形水流在與噴頭底部A的距離為1m處達(dá)到距地面最大高度2.25m.試在恰當(dāng)?shù)闹苯亲鴺?biāo)系中求出與該拋物線(xiàn)水流對(duì)應(yīng)的二次函數(shù)關(guān)系式.
小明在解答下圖所示的問(wèn)題時(shí),寫(xiě)下了如下解答過(guò)程:

①以水流的最高點(diǎn)為原點(diǎn),過(guò)原點(diǎn)的水平線(xiàn)為橫軸,過(guò)原點(diǎn)的鉛垂線(xiàn)為縱軸建立如圖所示的平面直角坐標(biāo)系;
②設(shè)拋物線(xiàn)的解析式為y=ax2
③則B點(diǎn)的坐標(biāo)為(-1,-1);
④代入y=ax2,得-1=a•1,所以a=-1
⑤所以y=-x2
問(wèn):(1)小明的解答過(guò)程是否正確,若不正確,請(qǐng)你加以改正;
(2)噴出的水流能否澆灌到地面上距離A點(diǎn)3.5m的莊稼上(圖上莊稼在A點(diǎn)的右側(cè),莊稼的高度不計(jì)),若不能請(qǐng)你在上圖所示的坐標(biāo)系中將噴頭B上下或左右平移,問(wèn)至少要平移多少距離才能澆灌到地面的莊稼,并求出此時(shí)噴出的拋物線(xiàn)形水流的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)y=-
2
3
x2+bx+c經(jīng)過(guò)A(0,-4)、B(x1,0)、C(x2,0)三點(diǎn),且x2-x1=5.
(1)求b、c的值;
(2)在拋物線(xiàn)上求一點(diǎn)D,使得四邊形BDCE是以BC為對(duì)角線(xiàn)的菱形;
(3)在拋物線(xiàn)上是否存在一點(diǎn)P,使得四邊形BPOH是以O(shè)B為對(duì)角線(xiàn)的菱形?若存在,求出點(diǎn)P的坐標(biāo),并判斷這個(gè)菱形是否為正方形;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,一條拋物線(xiàn)與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),其頂點(diǎn)P在線(xiàn)段MN上移動(dòng).若點(diǎn)M、N的坐標(biāo)分別為(-1,-2)、(1,-2),點(diǎn)B的橫坐標(biāo)的最大值為3,則點(diǎn)A的橫坐標(biāo)的最小值為( 。
A.-3B.-1C.1D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案