【題目】為改善生態(tài)環(huán)境,防止水土流失,某村計劃在江漢堤坡種植白楊樹,現(xiàn)甲、乙兩家林場有相同的白楊樹苗可供選擇,其具體銷售方案如下:

甲林場

乙林場

購樹苗數(shù)量

銷售單價

購樹苗數(shù)量

銷售單價

不超過1000棵時

4/

不超過2000棵時

4/

超過1000棵的部分

3.8/

超過2000棵的部分

3.6/

設(shè)購買白楊樹苗x棵,到兩家林場購買所需費用分別為y(元)、y(元).

1)該村需要購買1500棵白楊樹苗,若都在甲林場購買所需費用為   元,若都在乙林場購買所需費用為   元;

2)分別求出y、yx之間的函數(shù)關(guān)系式;

3)如果你是該村的負責(zé)人,應(yīng)該選擇到哪家林場購買樹苗合算,為什么?

【答案】(1)5900,6000;(2y=y=;(30≤x≤1000x=3000時,兩家林場購買一樣,當1000x3000時,到甲林場購買合算;x3000時,到乙林場購買合算.

【解析】試題分析: 1)由單價×數(shù)量就可以得出購買樹苗需要的費用;
2)根據(jù)分段函數(shù)的表示法,甲林場分兩種情況 .乙林場分兩種情況.由由單價×數(shù)量就可以得出購買樹苗需要的費用表示出、之間的函數(shù)關(guān)系式;
3)分類討論,當, 時, 時,表示出、的關(guān)系式,就可以求出結(jié)論.

試題解析:(1)由題意,得.

=4×1000+3.815001000=5900元,

=4×1500=6000元;

故答案為:5900,6000

2)當時,

時.

(取整數(shù)).

時,

時,

(取整數(shù)).

3)由題意,得

時,兩家林場單價一樣,

∴到兩家林場購買所需要的費用一樣.

時,甲林場有優(yōu)惠而乙林場無優(yōu)惠,

∴當時,到甲林場優(yōu)惠;

時,

=

解得:

∴當時,到兩家林場購買的費用一樣;

< 時,

時,到甲林場購買合算;

> 時,

解得:

∴當時,到乙林場購買合算.

綜上所述,當時,兩家林場購買一樣,

時,到甲林場購買合算;

時,到乙林場購買合算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:

港珠澳大橋東起香港國際機場附近的香港口岸人工島,向西橫跨伶仃洋海域后連接珠海和澳門,止于珠海洪灣,總長 55 千米,是粵港澳三地首次合作共建的超大型跨海交通工程,也是中國第一例集橋、雙人工島、隧道為一體的通道.據(jù)統(tǒng)計,港珠澳大橋開通后的首個周日經(jīng)大橋往來三地的車流量超過 3000輛次,客流量則接近 7.8 萬人次.某天,甲乙兩輛巴士均從香港口岸人工島出發(fā)沿港珠澳大橋開往珠海洪灣,甲巴士平均每小時比乙巴士多行駛 10 千米,其行駛時間是乙巴士行駛時間的求乘坐甲巴士從香港口岸人工島出發(fā)到珠海洪灣需要多長時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為,連接AC、BD交于點O,CE平分∠ACD交BD于點E,

(1)求DE的長;

(2)過點EF作EF⊥CE,交AB于點F,求BF的長;

(3)過點E作EG⊥CE,交CD于點G,求DG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】全面二孩政策于2016年1月1日正式實施,黔南州某中學(xué)對八年級部分學(xué)生進行了隨機問卷調(diào)查,其中一個問題“你爸媽如果給你添一個弟弟(或妹妹),你的態(tài)度是什么?”共有如下四個選項(要求僅選擇一個選項):
A.非常愿意 B.愿意 C.不愿意 D.無所謂
如圖是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖,請結(jié)合圖中信息解答以下問題:

(1)試問本次問卷調(diào)查一共調(diào)查了多少名學(xué)生?并補全條形統(tǒng)計圖;
(2)若該年級共有450名學(xué)生,請你估計全年級可能有多少名學(xué)生支持(即態(tài)度為“非常愿意”和“愿意”)爸媽給自己添一個弟弟(或妹妹)?
(3)在年級活動課上,老師決定從本次調(diào)查回答“不愿意”的同學(xué)中隨機選取2名同學(xué)來談?wù)勊麄兊南敕,而本次調(diào)查回答“不愿意”的這些同學(xué)中只有一名男同學(xué),請用畫樹狀圖或列表的方法求選取到兩名同學(xué)中剛好有這位男同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:
一般地,當α、β為任意角時,tan(α+β)與tan(α﹣β)的值可以用下面的公式求得:tan(α±β)=
例如:tan15°=tan(45°﹣30°)= = =
= = =2﹣
根據(jù)以上材料,解決下列問題:
(1)求tan75°的值;
(2)都勻文峰塔,原名文筆塔,始建于明代萬歷年間,系五層木塔.文峰塔的木塔年久傾毀,僅存塔基.1983年,人民政府撥款維修文峰塔,成為今天的七層六面實心石塔(圖1),小華想用所學(xué)知識來測量該鐵塔的高度,如圖2,已知小華站在離塔底中心A處5.7米的C處,測得塔頂?shù)难鼋菫?5°,小華的眼睛離地面的距離DC為1.72米,請幫助小華求出文峰塔AB的高度.(精確到1米,參考數(shù)據(jù) ≈1.732, ≈1.414)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角板按如圖放置,則下列結(jié)論

①如果∠2=30°,則有ACDE;

②∠BAE+CAD =180°;

③如果BCAD,則有∠2=45°;

④如果∠CAD=150°,必有∠4=C;

正確的有( )

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,DE∥BC,BE與CD交于點O,AO與DE,BC交于N、M,則下列式子中錯誤的是( )

A. =
B. =
C. =
D. =

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長為3的正方形ABCD中,點E、F、G、H分別在AB、BC、CD、DA邊上,且滿足EB=FC=GD=HA=1,BD分別與HG、HF、EF相交于M、O、N.給出以下結(jié)論,
①HO=OF ②0F2=ON·OB③HM=2MG ④S△HOM= ,其中正確的個數(shù)有( )


A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義新運算:對于任意實數(shù)a,b(其中a≠0),都有ab= ,等式右邊是通常的加法、減法及除法運算,例如23= = + =1.
(1)求(﹣2)3的值;
(2)若x2=1,求x的值.

查看答案和解析>>

同步練習(xí)冊答案