如圖,⊙O中,OA⊥BC,且∠AOB=50°,則∠ADC=    度.
【答案】分析:根據(jù)垂徑定理得弧AC=弧AB,再根據(jù)同弧或等弧所對的圓周角等于它所對的圓心角的一半,得∠ADC=∠AOB=25°.
解答:解:∵OA⊥BC,
∴弧AC=弧AB,
∴∠ADC=∠AOB=25°.
點評:本題利用了垂徑定理和圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,△OAB中,OA=OB,∠A=30°,⊙O經(jīng)過AB的中點E分別交OA、OB于C、D兩點,連接CD.
(1)求證:AB是⊙O的切線.
(2)求證:CD∥AB.
(3)若CD=4
3
,求扇形OCED的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•河北)如圖,△OAB中,OA=OB=10,∠AOB=80°,以點O為圓心,6為半徑的優(yōu)弧
MN
分別交OA,OB于點M,N.
(1)點P在右半弧上(∠BOP是銳角),將OP繞點O逆時針旋轉80°得OP′.求證:AP=BP′;
(2)點T在左半弧上,若AT與弧相切,求點T到OA的距離;
(3)設點Q在優(yōu)弧
MN
上,當△AOQ的面積最大時,直接寫出∠BOQ的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙O中,OA⊥BC,∠CDA=35°,求∠AOB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△AOB中,OA=OB=10,∠AOB=120°,以O為圓心,5為半徑的⊙O與OA、OB相交.
求證:AB是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△AOB中,OA=OB,∠AOB=90゜,AD平分∠OAB交OB于D,OE⊥AD交AB于E,垂足為F,
(1)求證:OD=BE; 
(2)若DF=
2
,求AD-OE的值.

查看答案和解析>>

同步練習冊答案