【題目】如圖,點M是ABC內(nèi)一點,過點M分別作直線平行于ABC的各邊,所形成的三個小三角形1、△2、△3(圖中陰影部分)的面積分別是1、4、25.則ABC的面積是   

【答案】64

【解析】試題分析:根據(jù)平行可得三個三角形相似,再由它們的面積比等于相似比的平方,設(shè)其中一邊為一求未知數(shù),然后計算出最大的三角形與最小的三角形的相似比,從而求面積比.

試題解析:如圖,

MBC的平行線交AB,ACD,E,MAC平行線交AB,BCF,H,MAB平行線交AC,BCI,G,

根據(jù)題意得,1∽△2∽△3,

∵△1:2=1:4,1:3=1:25,

∴它們的邊長比為1:2:5,

又∵四邊形BDMG與四邊形CEMH為平行四邊形,

DM=BG,EM=CH,

設(shè)DMx,

BC=BG+GH+CH=x+5x+2x=8x,

BC:DM=8:1,

SABC:SFDM=64:1,

SABC=1×64=64,

故答案為:64.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCABC=90°,,AB=4 cm BC=3cm,動點P3cm/s的速度由AC運動,動點Q同時以1cm/s的速度由BCB的延長線方向運動,連PQABD,則當運動時間為____s時,ADP是以AP為腰的等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AC是菱形ABCD的對角線,∠BAC=60°,點E是直線BC上的一個動點,連接AE,以AE為邊作菱形AEFG,并且使∠EAG=60°,連接CG,當點E在線段BC上時,如圖1,易證:AB=CG+CE.

(1)當點E在線段BC的延長線上時(如圖2),猜想AB,CG,CE之間的關(guān)系并證明;

(2)當點E在線段CB的延長線上時(如圖3),直接寫出AB,CG,CE之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲乙兩人做擲一個均勻小立方體的游戲,立方體的每個面上分別標有數(shù)字1,234,5,6,任意擲出小立方體后,若朝上的數(shù)字小于3,則甲獲勝;若朝上的數(shù)字大于3 ,則乙獲勝.你認為這個游戲?qū)滓译p方公平嗎?為什么?你能不能就上面的小立方體設(shè)計一個較為公平的游戲?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),的頂點、、分別與正方形的頂點、、重合.

1)若正方形的邊長為,用含的代數(shù)式表示:正方形的周長等于_______,的面積等于_______.

2)如圖2,將繞點順時針旋轉(zhuǎn),邊和正方形的邊交于點.連結(jié),設(shè)旋轉(zhuǎn)角.

①試說明

②若有一個內(nèi)角等于,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,y軸上有一點A0,1),點Bx軸上一點,∠ABO60°,拋物線y=﹣x2++3x軸交于C、D兩點(點C在點D的左側(cè)).

1)將點C向右平移個單位得到點E,過點E作直線lx軸,點Py軸上一動點,過點PPQy軸交直線l于點Q,點K為拋物線上第一象限內(nèi)的一個動點,當ABK面積最大時,求KQ+QP+PE的最小值,及此時點P的坐標;

2)在(1)的條件下,將線段PE繞點P逆時針旋轉(zhuǎn)90°后得線段PE′,問:在第一象限內(nèi)是否存在點S,使得SPE'是有一個角為60°,且以線段PE′為斜邊的直角三角形,若存在請直接寫出所有滿足條件的點S,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖ΔABC中,ABAC,D點在BC上,且BDADDCAC.并求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖,在中,是高,是角平分線,當,,則____

2)若的度數(shù)分別用字母來表示(),你能找到之間的關(guān)系嗎? ______.(請直接寫出你發(fā)現(xiàn)的結(jié)論)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,王強在一次高爾夫球的練習中,在某處擊球,其飛行路線滿足拋物線y=x2+x,其中ym)是球飛行的高度,xm)是球飛行的水平距離.

(1)飛行的水平距離是多少時,球最高?

(2)球從飛出到落地的水平距離是多少?

查看答案和解析>>

同步練習冊答案