【題目】在平面直角坐標系xOy中,直線y=2x+1與雙曲線y= 的一個交點為A(m,﹣3).
(1)求雙曲線的表達式;
(2)過動點P(n,0)(n<0)且垂直于x軸的直線與直線y=2x+1和雙曲線y= 的交點分別為B,C,當點B位于點C上方時,直接寫出n的取值范圍.
【答案】
(1)解:當y=2x+1=﹣3時,x=﹣2,
∴點A的坐標為(﹣2,﹣3),
將點A(﹣2,﹣3)代入y= 中,
﹣3= ,解得:k=6,
∴雙曲線的表達式為y= .
(2)解:依照題意,畫出圖形,如圖所示.
觀察函數(shù)圖象,可知:當﹣2<x<0時,直線y=2x+1在雙曲線y= 的上方,
∴當點B位于點C上方時,n的取值范圍為﹣2<x<0.
【解析】(1)根據(jù)點A的縱坐標利用一次函數(shù)圖象上點的坐標特征,可求出點A的坐標,根據(jù)點A的坐標利用待定系數(shù)法,即可求出雙曲線的表達式;(2)依照題意畫出函數(shù)圖象,根據(jù)兩函數(shù)圖象的上下位置關(guān)系,即可找出n的取值范圍.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=6,點E為BC的中點,將△ABE沿AE折疊,使點B落在矩形內(nèi)點F處,連接CF,則CF的長為( )
A.1.8
B.2.4
C.3.2
D.3.6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平行四邊形ABCD中,點E在AD邊上,連接BE、CE,EB平分∠AEC
(1)如圖1,判斷△BCE的形狀,并說明理由;
(2)如圖2,若∠A=90°,BC=5,AE=1,求線段BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=6,AC=BC=5,將△ABC繞點A按順時針方向旋轉(zhuǎn),得到△ADE,旋轉(zhuǎn)角為α(0°<α<180°),點B的對應(yīng)點為點D,點C的對應(yīng)點為點E,連接BD,BE.
(1)如圖,當α=60°時,延長BE交AD于點F.
①求證:△ABD是等邊三角形;
②求證:BF⊥AD,AF=DF;
③請直接寫出BE的長;
(2)在旋轉(zhuǎn)過程中,過點D作DG垂直于直線AB,垂足為點G,連接CE,當∠DAG=∠ACB,且線段DG與線段AE無公共點時,請直接寫出BE+CE的值.
溫馨提示:考生可以根據(jù)題意,在備用圖中補充圖形,以便作答.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知過點(2,-1),與軸交于點A,F點為(1,2).
(Ⅰ)求的值及A點的坐標;
(Ⅱ)將函數(shù)的圖象沿軸方向向上平移得到函數(shù),其圖象與軸交于點Q,且OQ=QF,求平移后的函數(shù)的解析式;
(Ⅲ)若點A關(guān)于的對稱點為K,請求出直線FK與軸的交點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=BC,∠ABC=90°.以AB為斜邊作等腰直角三角形ADB.點P是直線DB上一個動點,連接AP,作PE⊥AP交BC所在的直線于點E.
(1)如圖1,點P在BD的延長線上,PE⊥EC,AD=1,直接寫出PE的長;
(2)點P在線段BD上(不與B,D重合),依題意,將圖2補全,求證:PA=PE;
(3)點P在DB的延長線上,依題意,將圖3補全,并判斷PA=PE是否仍然成立.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△BCE中,點A是邊BE上一點,以AB為直徑的⊙O與CE相切于點D,AD∥OC,點F為OC與⊙O的交點,連接AF.
(1)求證:CB是⊙O的切線;
(2)若∠ECB=60°,AB=6,求圖中陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com