精英家教網(wǎng)如圖,已知圓心A(0,3),⊙A與x軸相切,⊙B的圓心在x軸的正半軸上,且⊙B與⊙A外切于點(diǎn)P,兩圓的公切線(xiàn)MP交y軸于點(diǎn)M,交x軸于點(diǎn)N.
(1)若sin∠OAB=
45
,求直線(xiàn)MP的解析式及經(jīng)過(guò)M、N、B三點(diǎn)的拋物線(xiàn)的解析式.
(2)若⊙A的位置大小不變,⊙B的圓心在x軸的正半軸上移動(dòng),并使⊙B與⊙A始終外切,過(guò)M作⊙B的切線(xiàn)MC,切點(diǎn)為C,在此變化過(guò)程中探究:
①四邊形OMCB是什么四邊形,對(duì)你的結(jié)論加以證明.
②經(jīng)過(guò)M、N、B三點(diǎn)的拋物線(xiàn)內(nèi)是否存在以BN為腰的等腰三角形?若存在,表示出來(lái);若不存在,說(shuō)明理由.
分析:(1)已知了A的坐標(biāo)可得出圓A的半徑,在直角三角形OAB中,可根據(jù)OA的長(zhǎng)和∠OAB的正弦值求出AB和OB的長(zhǎng),進(jìn)而可得出圓B的半徑長(zhǎng).也就求出了B點(diǎn)、M點(diǎn)的坐標(biāo).
根據(jù)相似三角形BPN和BOA可求出BN的長(zhǎng),進(jìn)而可求出ON的長(zhǎng),也就得出了N點(diǎn)的坐標(biāo),可根據(jù)M、N、B三點(diǎn)的坐標(biāo),用待定系數(shù)法求出拋物線(xiàn)的解析式.
(2)①應(yīng)該是矩形,不難得出△OAB和△PAM全等,那么OB=MP,AM=AB(也可通過(guò)圓A的半徑長(zhǎng)和∠OAB的正切值來(lái)求出),由于MP、MC都是圓B的切線(xiàn),根據(jù)切線(xiàn)長(zhǎng)定理可得出MP=MC=OB,而OM=BC=AM-OA=AB-AP,由此可得出四邊形OBCM是平行四邊形.由于∠BOM是直角,因此四邊形OBCM是矩形.
②存在,根據(jù)①不難得出BN=MN,而M點(diǎn)也在拋物線(xiàn)上,根據(jù)拋物線(xiàn)的對(duì)稱(chēng)性可知,點(diǎn)M關(guān)于拋物線(xiàn)對(duì)稱(chēng)軸對(duì)稱(chēng)的點(diǎn)Mn也一定符合這樣的條件.因此滿(mǎn)足條件的三角形有兩個(gè),△MNB和△MnNB.
解答:解:(1)在Rt△AOB中,∵OA=3,sin∠OAB=
4
5
,
∴cos∠OAB=
3
5
,
∴AB=5,OB=4,BP=5-3=2,
在Rt△APM中,
AP
AM
=cos∠OAB=
3
5
,
∴AM=5,OM=2,
點(diǎn)M(0,-2),
又△NPB∽△AOB
BN
BP
=
AB
OB
,BN=
5
2

∴ON=OB-BN=4-
5
2
=
3
2

∴點(diǎn)N(
3
2
,0)
設(shè)MP的解析式為y=kx+b,
∵M(jìn)P經(jīng)過(guò)M、N兩點(diǎn),
∴得
b=-2
3
2
k+b=0
,
解得
b=-2
k=
4
3

∴MP的解析式為y=
4
3
x-2.
設(shè)過(guò)M、N、B的拋物線(xiàn)解析式為y=a(x-
3
2
)(x-4),
且點(diǎn)M(0,-2),可得a=-
1
3
,
∴拋物線(xiàn)的解析式為y=-
1
3
(x-
3
2
)(x-4),
即y=-
1
3
x2+
11
6
x-2.

(2)①四邊形OMCB是矩形.
證明:在⊙A不動(dòng)、⊙B運(yùn)動(dòng)變化過(guò)程中,
恒有∠BAO=∠MAP,OA=AP,∠AOB=∠APM=90°,
∴△AOB≌△APM,
∴OB=PM,AB=AM,
∴PB=OM,而PB=PC,
∴OM=BC
由切線(xiàn)長(zhǎng)定理知MC=MP,
∴MC=OB,
∴四邊形MOBC是平行四邊形.
又∵∠MOB=90°,
∴四邊形MOBC是矩形.
②存在.由上證明可知Rt△MON≌Rt△BPN,
∴BN=MN
因此在過(guò)M、N、B三點(diǎn)的拋物線(xiàn)內(nèi)有以BN為腰的等腰三角形MNB存在
由拋物線(xiàn)的軸對(duì)稱(chēng)性可知,在拋物線(xiàn)上必有一點(diǎn)Mn與M關(guān)于其對(duì)稱(chēng)軸對(duì)稱(chēng),
∴BN=BMn
這樣得到滿(mǎn)足條件的三角形有兩個(gè),△MNB和△MnNB.
點(diǎn)評(píng):本題著重考查了待定系數(shù)法求二次函數(shù)解析式、三角形全等、矩形的判定、等腰三角形的判定等知識(shí)點(diǎn),綜合性強(qiáng),考查學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知⊙P圓心P在直線(xiàn)y=2x-1的圖象上運(yùn)動(dòng).
(1)若⊙P的半徑為2,當(dāng)⊙P與x軸相切時(shí),求P點(diǎn)的坐標(biāo);
(2)若⊙P的半徑為2,當(dāng)⊙P與y軸相切時(shí),求P點(diǎn)的坐標(biāo);
(3)若⊙P與x軸和y軸都相切時(shí),⊙P的半徑是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知圓心為A,B,C的三個(gè)圓彼此相切,且均與直線(xiàn)l相切.若⊙A,⊙B,⊙C的半徑分別為a,b,c(0<c<a<b),則a,b,c一定滿(mǎn)足的關(guān)系式為( 。
精英家教網(wǎng)
A、2b=a+c
B、
b
=
a
+
c
C、
1
c
=
1
a
+
1
b
D、
1
c
=
1
a
+
1
b

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•太倉(cāng)市二模)如圖,已知圓心為C(0,1)的圓與y軸交于A,B兩點(diǎn),與x軸交于D,E兩點(diǎn),且DE=4
2
.點(diǎn)Q為⊙C上的一個(gè)動(dòng)點(diǎn),過(guò)Q的直線(xiàn)交y軸于點(diǎn)P(0,-8),連結(jié)OQ.
(1)直徑AB=
6
6
;
(2)當(dāng)點(diǎn)Q與點(diǎn)D重合時(shí),求證:直線(xiàn)PD為圓的切線(xiàn);
(3)猜想并證明在運(yùn)動(dòng)過(guò)程中,PQ與OQ之比為一個(gè)定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知圓心A(0,3),⊙A與x軸相切,⊙B的圓心在x軸的正半軸上,且⊙B與⊙A外切于點(diǎn)P,兩圓的公切線(xiàn)MP交y軸于點(diǎn)M,交x軸于點(diǎn)N.
(1)若sin∠OAB=數(shù)學(xué)公式,求直線(xiàn)MP的解析式及經(jīng)過(guò)M、N、B三點(diǎn)的拋物線(xiàn)的解析式.
(2)若⊙A的位置大小不變,⊙B的圓心在x軸的正半軸上移動(dòng),并使⊙B與⊙A始終外切,過(guò)M作⊙B的切線(xiàn)MC,切點(diǎn)為C,在此變化過(guò)程中探究:
①四邊形OMCB是什么四邊形,對(duì)你的結(jié)論加以證明.
②經(jīng)過(guò)M、N、B三點(diǎn)的拋物線(xiàn)內(nèi)是否存在以BN為腰的等腰三角形?若存在,表示出來(lái);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案