如圖,在等邊△ABC中,D是邊AC上一點,連接BD.將△BCD繞點B逆時針旋轉60°得到△BAE,連接ED.若BC=10,BD=9,則△AED的周長是   
【答案】分析:先由△ABC是等邊三角形得出AC=AB=BC=10,根據(jù)圖形旋轉的性質得出AE=CD,BD=BE,故可得出AE+AD=AD+CD=AC=10,
由∠EBD=60°,BE=BD即可判斷出△BDE是等邊三角形,故DE=BD=9,故△AED的周長=AE+AD+DE=AC+BD=19.
解答:解:∵△ABC是等邊三角形,
∴AC=AB=BC=10,
∵△BAE△BCD逆時針旋旋轉60°得出,
∴AE=CD,BD=BE,∠EBD=60°,
∴AE+AD=AD+CD=AC=10,
∵∠EBD=60°,BE=BD,
∴△BDE是等邊三角形,
∴DE=BD=9,
∴△AED的周長=AE+AD+DE=AC+BD=19.
故答案為:19.
點評:本題考查的是圖形旋轉的性質及等邊三角形的判定與性質,熟知旋轉前、后的圖形全等是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

16、如圖,在等邊△ABC的邊BC上任取一點D,作∠ADE=60°,DE交∠C的外角平分線于E,則△ADE是
等邊
三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在等邊△ABC中,D為BC邊上一點,E為AC邊上一點,且∠ADE=60°,BD=3,CE=2,則△ABC的面積為( 。
A、81
3
B、
81
3
2
C、
81
3
4
D、
81
3
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、如圖,在等邊△ABC中,AD是∠BAC的平分線,點E在AC邊上,且∠EDC=15°.
(1)試說明直線AD是線段BC的垂直平分線;
(2)△ADE是什么三角形?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等邊△ABC中,D是AC的中點,延長BC到點E,使CE=CD,AB=10cm.
(1)求BE的長;
(2)△BDE是什么三角形,為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等邊△ABC中,BF是高,D是BF上一點,且OF=AF,作OE⊥BF,垂足為D,且OE=OB,連AE、AO、BE,求證:
(1)AB=AE;
(2)AE⊥BC; 
(3)AO⊥BE.

查看答案和解析>>

同步練習冊答案