【題目】今年312日植樹節(jié),美華中學(xué)為了進一步綠化學(xué)校,計劃購買甲、乙兩種樹苗共計50棵.設(shè)購買甲種樹苗棵,有關(guān)甲、乙兩種樹苗的信息如下:甲種樹苗每棵50元,乙種樹苗每棵80元;甲種樹苗的成活率為90%,乙種樹苗的成活率為95%.

1)根據(jù)信息填表(用含的式子表示):

樹苗類型

甲種樹苗

乙種樹苗

購買樹苗的數(shù)量(單位:棵)

購買樹苗的費用(單位:元)

2)如果購買甲、乙兩種樹苗共用去2560元,那么甲、乙兩種樹苗各購買了多少棵?

3)如果要使這批樹苗的成活率不低于92%,請設(shè)計一種購買甲、乙樹苗的方案,使購買甲、乙兩種樹苗的費用最少,寫出購買方案并計算出購買甲、乙兩種樹苗的總費用.

【答案】1)見解析;(2)甲種樹苗購買了48棵,乙種樹苗購買了2棵;(3)購買方案為購買甲樹30棵,乙樹20棵.購買甲、乙兩種樹苗的總費用為3100元.

【解析】

1)根據(jù)兩種樹苗共購買50棵,再結(jié)合題目中的單價即可填表;

2)根據(jù)(1)中表格信息以及共花費2560元即可列出方程,求解即可;

3)根據(jù)這批樹苗的成活率不低于92%列出不等式求解即可.

解:(1)根據(jù)信息填表

樹苗類型

甲種樹苗

乙種樹苗

購買樹苗的數(shù)量(單位:棵)

購買樹苗的費用(單位:元)

2)由(1)可得:

解得

答:甲種樹苗購買了48棵,乙種樹苗購買了2棵;

3)由題意,得

解得

由題意得:購買甲樹越多,乙樹越少,則總費用越少;

購買方案:購買甲樹30棵,乙樹20棵;

(元)

答:購買方案為購買甲樹30棵,乙樹20棵.購買甲、乙兩種樹苗的總費用為3100元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了治理大氣污染,我國西部某市抽取了該市2019年中120天的空氣質(zhì)量指數(shù),繪制了如下不完整的統(tǒng)計圖表:

1 ;

2)請把空氣質(zhì)量指數(shù)的條形統(tǒng)計圖補充完整;

3)若繪制“空氣質(zhì)量指數(shù)的扇形統(tǒng)計圖”,級別為優(yōu)所對應(yīng)扇形的圓心角的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD內(nèi)接于圓O,連結(jié)BD,BAD=105°,DBC=75°

1求證:BD=CD;

2若圓O的半徑為3,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象交坐標(biāo)軸于A(﹣1,0),B(4,0),C(0,﹣4)三點,點P是直線BC下方拋物線上一動點.

(1)求這個二次函數(shù)的解析式;

(2)是否存在點P,使POC是以O(shè)C為底邊的等腰三角形?若存在,求出P點坐標(biāo);若不存在,請說明理由;

(3)動點P運動到什么位置時,PBC面積最大,求出此時P點坐標(biāo)和PBC的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在ABC中,∠B<∠C,ADAE分別是ABC的高和角平分線,

1)若∠B=30°,∠C=50°.則∠DAE的度數(shù)是 .(直接寫出答案)

2)寫出∠DAE、∠B、∠C的數(shù)量關(guān)系: ,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點A0,b)、點Ba,0)、點Dd,0)且ab、c滿足DEx軸且∠BED=ABDBEy軸于點C,AEx軸于點F

1)求點A、B、D的坐標(biāo);

2)求點C、E、F的坐標(biāo);

3)如圖,過P0,-1)作x軸的平行線,在該平行線上有一點Q(點QP的右側(cè))使∠QEM=45°,QEx軸于N,MEy軸正半軸于M,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ACB中,∠ACB=90°,AC=BC,點C的坐標(biāo)為(﹣2,0),點A的坐標(biāo)為(﹣6,3),求點B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一架云梯長25 m,斜靠在一面墻上,梯子靠墻的一端距地面24 m.

(1)這個梯子底端離墻有多少米?

(2) 如果梯子的頂端下滑了4m,那么梯子的底部在水平方向也滑動了4m?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】作圖題:已知點A,B,直線ll上一點M.

1)如圖1,連接MA,并在直線l上作出一點N,使得點N在點M的左邊,且滿足MN=MA,作線段MN的中點C,連接BC

2)如圖2,請在直線l上確定一點O,使點O到點A與點O到點B的距離之和最短,并寫出畫圖的依據(jù).

查看答案和解析>>

同步練習(xí)冊答案