【題目】二次函數(shù)yax+bx+cx,y的對(duì)應(yīng)值如下表:

x

-

0

1

2

y

-

m

1

n

下列關(guān)于該函數(shù)性質(zhì)的判斷:①該二次函數(shù)有最大值;②當(dāng)x0時(shí),函數(shù)yx的增大而減。虎鄄坏仁y<﹣1的解集是﹣1x2;④關(guān)于x的一元二次方程ax2+bx+c0的兩個(gè)實(shí)數(shù)根分別位于﹣1xx2之間.其中正確結(jié)論的個(gè)數(shù)有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

【答案】B

【解析】

由圖表描點(diǎn)連線,畫出二次函數(shù)的圖象,結(jié)合圖象和表格可知,對(duì)稱軸為直線,,即可判斷得出結(jié)果.

解:由圖表數(shù)據(jù)可畫出二次函數(shù)的的圖象,根據(jù)圖象可知,二次函數(shù)對(duì)稱軸為直線,,看圖象得出,

.二次函數(shù)有最大值,故①正確;

②.當(dāng),函數(shù)yx的增大而增大,當(dāng)時(shí),函數(shù)yx的增大而減小,故②錯(cuò)誤;

③.不等式y<﹣1的解集是;故③錯(cuò)誤;

.關(guān)于x的一元二次方程ax2+bx+c0的兩個(gè)實(shí)數(shù)根,即二次函數(shù)時(shí)的值,由圖可知,分別位于﹣1xx2之間,故④正確.

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,∠A30°,CD為斜邊AB的中線.過點(diǎn)DAB的垂線交AC于點(diǎn)E,再過A、D、E三點(diǎn)作⊙O

1)確定⊙O的圓心O的位置,并證明CD為⊙O的切線;

2)若BC3,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在圓O中,弦AC,BD相交于點(diǎn)M,且∠A=∠B

1)求證:ACBD;

2)若OA4,∠A30°,當(dāng)ACBD時(shí),求弧CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,AE是角平分線,BM平分∠ABCAE于點(diǎn)M,經(jīng)過B、M兩點(diǎn)的⊙OBC于點(diǎn)G,交AB于點(diǎn)F,F(xiàn)B恰為⊙O的直徑.

(1)判斷AE與⊙O的位置關(guān)系,并說明理由;

(2)若BC=6,AC=4CE時(shí),求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線軸交于點(diǎn),與反比例函數(shù)的圖象交于,兩點(diǎn),的面積為.

1)求一次函數(shù)的解析式;

2)求點(diǎn)坐標(biāo)和反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】祥云橋位于省城太原南部,該橋塔主體由三根曲線塔柱組合而成,全橋共設(shè)13對(duì)直線型斜拉索,造型新穎,是三晉大地的一種象征.某數(shù)學(xué)綜合與實(shí)踐小組的同學(xué)把測量斜拉索頂端到橋面的距離作為一項(xiàng)課題活動(dòng),他們制訂了測量方案,并利用課余時(shí)間借助該橋斜拉索完成了實(shí)地測量.測量結(jié)果如下表.

項(xiàng)目

內(nèi)容

課題

測量斜拉索頂端到橋面的距離

測量示意圖

說明:兩側(cè)最長斜拉索AC,BC相交于點(diǎn)C,分別與橋面交于A,B兩點(diǎn),且點(diǎn)A,B,C在同一豎直平面內(nèi).

測量數(shù)據(jù)

∠A的度數(shù)

∠B的度數(shù)

AB的長度

38°

28°

234

(1)請(qǐng)幫助該小組根據(jù)上表中的測量數(shù)據(jù),求斜拉索頂端點(diǎn)CAB的距離(參考數(shù)據(jù):sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)

(2)該小組要寫出一份完整的課題活動(dòng)報(bào)告,除上表的項(xiàng)目外,你認(rèn)為還需要補(bǔ)充哪些項(xiàng)目(寫出一個(gè)即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,弦CDAB,垂足為點(diǎn)P,直線BFAD延長線交于點(diǎn)F,且∠AFB=∠ABC

1)求證:直線BF是⊙O的切線;

2)若CD2,BP1,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,坐標(biāo)原點(diǎn)為O,A點(diǎn)坐標(biāo)為(4,0),B點(diǎn)坐標(biāo)為(1,0),以AB的中點(diǎn)P為圓心,AB為直徑作⊙Py軸的負(fù)半軸交于點(diǎn)C

1)求經(jīng)過AB、C三點(diǎn)的拋物線對(duì)應(yīng)的函數(shù)表達(dá)式;

2)設(shè)M為(1)中拋物線的頂點(diǎn),試說明直線MC與⊙P的位置關(guān)系,并證明你的結(jié)論;

3)在第二象限中是否存在的一點(diǎn)Q,使得以AO,Q為頂點(diǎn)的三角形與OBC相似.若存在,請(qǐng)求出所有滿足的Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究:

已知二次函數(shù)y=﹣x2+x+2的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的左側(cè)),與y軸交于點(diǎn)C

1)求點(diǎn)A,B,C的坐標(biāo);

2)求證:ABC為直角三角形;

3)如圖,動(dòng)點(diǎn)E,F同時(shí)從點(diǎn)A出發(fā),其中點(diǎn)E以每秒2個(gè)單位長度的速度沿AB邊向終點(diǎn)B運(yùn)動(dòng),點(diǎn)F以每秒個(gè)單位長度的速度沿射線AC方向運(yùn)動(dòng).當(dāng)點(diǎn)F停止運(yùn)動(dòng)時(shí),點(diǎn)E隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,連結(jié)EF,將AEF沿EF翻折,使點(diǎn)A落在點(diǎn)D處,得到DEF.當(dāng)點(diǎn)FAC上時(shí),是否存在某一時(shí)刻t,使得DCO≌△BCO?(點(diǎn)D不與點(diǎn)B重合)若存在,求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案