【題目】如圖1,在平面直角坐標(biāo)系中,拋物線yax2+bx+3a≠0)與x軸分別交于A(﹣3,0),B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的頂點(diǎn)E(﹣14),對(duì)稱(chēng)軸交x軸于點(diǎn)F

1)請(qǐng)直接寫(xiě)出這條拋物線和直線AE、直線AC的解析式;

2)連接AC、AE、CE,判斷△ACE的形狀,并說(shuō)明理由;

3)如圖2,點(diǎn)D是拋物線上一動(dòng)點(diǎn),它的橫坐標(biāo)為m,且﹣3m<﹣1,過(guò)點(diǎn)DDKx軸于點(diǎn)KDK分別交線段AE、AC于點(diǎn)GH.在點(diǎn)D的運(yùn)動(dòng)過(guò)程中,

DG、GH、HK這三條線段能否相等?若相等,請(qǐng)求出點(diǎn)D的坐標(biāo);若不相等,請(qǐng)說(shuō)明理由;

②在①的條件下,判斷CGAE的數(shù)量關(guān)系,并直接寫(xiě)出結(jié)論.

【答案】1)y=﹣x2﹣2x+3;y2x+6,yx+3;(2)直角三角形,見(jiàn)解析;(3)①相等,(﹣23);②AE2CG

【解析】

1)設(shè)頂點(diǎn)式,將A點(diǎn)坐標(biāo)代入,再化為一般式,根據(jù)常數(shù)項(xiàng)等于3即可求出a的值,由此可得拋物線解析式,設(shè)直線AEAC的解析式,再分別將A點(diǎn)、E點(diǎn)代入即可求出直線AE的解析式,將A點(diǎn)、C點(diǎn)代入即可求出直線AC解析式;

2)分別求出AC2,CE2AE2,利用勾股定理的逆定理即可判定;

3)①設(shè)出點(diǎn)DG、H的坐標(biāo),表示DG、HK、GH長(zhǎng)度,先根據(jù)DGHK列出方程求得x值,再據(jù)此求得DG、HK、GH長(zhǎng)度,即可得解;②分別求出CGAE的長(zhǎng)度,即可得出它們的數(shù)量關(guān)系.

解:(1)拋物線的表達(dá)式為:yax+12+4ax2+2ax+a+4,

a+43,解得:a=﹣1,

故拋物線的表達(dá)式為:y=﹣x22x+3

設(shè)直線AE的解析式為:,

將點(diǎn)A(﹣30)、E(﹣14)的坐標(biāo)代入一次函數(shù)表達(dá)式得

,

解得:,

故直線AE的表達(dá)式為:y2x+6,

設(shè)直線AC的解析式為:
將點(diǎn)A(﹣3,0)、C0,3)的坐標(biāo)代入一次函數(shù)表達(dá)式得

,

解得:,

故直線AC的表達(dá)式為:yx+3

2)點(diǎn)A、CE的坐標(biāo)分別為:(﹣3,0)、(0,3)、(﹣1,4),

AC2=18,CE2=2,AE2=20,

AC2+CE2AE2,則△ACE為直角三角形;

3)①設(shè)點(diǎn)DG、H的坐標(biāo)分別為:(x,﹣x22x+3)、(x2x+6)、(x,x+3),

DG=﹣x22x+32x6=﹣x24x3HKx+3;GH2x+6x3x+3

當(dāng)DGHK時(shí),﹣x24x3x+3,解得:x=﹣2或﹣3(舍去﹣3),故x=﹣2

當(dāng)x=﹣2時(shí),DGHKGH1

DG、GHHK這三條線段相等時(shí),點(diǎn)D的坐標(biāo)為:(﹣2,3);

②由①的點(diǎn)G的坐標(biāo)為:(﹣2,2

CG;AE2,

AE2CG

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,等腰直角三角形的頂點(diǎn)都在網(wǎng)格點(diǎn)上,點(diǎn)、分別為線段、上的動(dòng)點(diǎn),且

(Ⅰ)如圖①,當(dāng)時(shí),計(jì)算的值等于__;

(Ⅱ)當(dāng)取得最小值時(shí),請(qǐng)?jiān)谌鐖D②所示的網(wǎng)格中,用無(wú)刻度的直尺,畫(huà)出線段,并簡(jiǎn)要說(shuō)明點(diǎn)和點(diǎn)的位置是如何找到的(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明騎自行車(chē)去上學(xué)途中,經(jīng)過(guò)先上坡后下坡的一段路,在這段路上所騎行的路程(米)與時(shí)間(分鐘)之間的函數(shù)關(guān)系如圖所示.下列結(jié)論:①小明上學(xué)途中下坡路的長(zhǎng)為1800米;②小明上學(xué)途中上坡速度為150米/分,下坡速度為200米/分;③如果小明放學(xué)后按原路返回,且往返過(guò)程中,上、下坡的速度都相同,則小明返回時(shí)經(jīng)過(guò)這段路比上學(xué)時(shí)多用1分鐘;④如果小明放學(xué)后按原路返回,返回所用時(shí)間與上學(xué)所用時(shí)間相等,且返回時(shí)下坡速度是上坡速度的1.5倍,則返回時(shí)上坡速度是160米/分其中正確的有( )

A.①④B.②③C.②③④D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在四邊形ABCD中,ADBC,∠A=90°,AB=AD=8cm,CD=10cm,點(diǎn)P從點(diǎn)B出發(fā),沿BA方向勻速運(yùn)動(dòng),速度為1cm/s;同時(shí),點(diǎn)Q從點(diǎn)D出發(fā),沿DC方向勻速運(yùn)動(dòng),速度為lcm/s.連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為ts)(0t8).解答下列問(wèn)題:

1)當(dāng)t為何值時(shí),PQAD

2)設(shè)四邊形APQD的面積為ycm2),求yt的函數(shù)關(guān)系式;

3)是否存在某一時(shí)刻t,使S四邊形APQOS四邊形BCQP=1727?若存在,求出t的值,并求此時(shí)PQ的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一艘船由A港沿北偏東65°方向航行kmB港,然后再沿北偏西40°方向航行至C港,C港在A港北偏東20°方向.

求:(1)∠C的度數(shù);

2A,C兩港之間的距離為多少km.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了計(jì)算湖中小島上涼亭P到岸邊公路l的距離,某數(shù)學(xué)興趣小組在公路l上的點(diǎn)A處,測(cè)得涼亭P在北偏東60°的方向上;從A處向正東方向行走200米,到達(dá)公路l上的點(diǎn)B處,再次測(cè)得涼亭P在北偏東45°的方向上,如圖所示.求涼亭P到公路l的距離.(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.414,≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,邊上的動(dòng)點(diǎn)(不與點(diǎn)重合),將沿所在直線翻折,得到,連接, 則下面結(jié)論錯(cuò)誤的是(

A.當(dāng)時(shí),

B.當(dāng)時(shí),∠

C.當(dāng) 時(shí),

D.長(zhǎng)度的最小值是1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的袋子中裝有三個(gè)完全相同的小球,分別標(biāo)有數(shù)字2,3,4.從袋子中隨機(jī)取出一個(gè)小球,用小球上的數(shù)字作為十位數(shù)字,然后放回,再取出一個(gè)小球,用小球上的數(shù)字作為個(gè)位數(shù)字,這樣組成一個(gè)兩位數(shù),請(qǐng)用列表法或畫(huà)樹(shù)狀圖的方法完成下列問(wèn)題.

(1)按這種方法組成兩位數(shù)45_____事件,填(“不可能、隨機(jī)、必然”)

(2)組成的兩位數(shù)能被3整除的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象經(jīng)過(guò)點(diǎn)A(﹣2,6),且與x軸相交于點(diǎn)B,與正比例函數(shù)y=3x的圖象相交于點(diǎn)C,點(diǎn)C的橫坐標(biāo)為1.

(1)求k、b的值;

(2)若點(diǎn)Dy軸負(fù)半軸上,且滿足SCOD=SBOC,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案