【題目】如圖,正方形、等腰的頂點在對角線上(點與、不重合),與交于,延長線與交于點,連接.
(1)求證:.
(2)求證:
(3)若,求的值.
【答案】(1)證明見解析;(2)證明見解析;(3).
【解析】
(1)證出∠ABP=∠CBQ,由SAS證明△ABP≌△CBQ可得結論;
(2)根據正方形的性質和全等三角形的性質得到,∠APF=∠ABP,可證明△APF∽△ABP,再根據相似三角形的性質即可求解;
(3)根據全等三角形的性質得到∠BCQ=∠BAC=45°,可得∠PCQ=90°,根據三角函數和已知條件得到,由(2)可得,等量代換可得∠CBQ=∠CPQ即可求解.
(1)∵是正方形,
∴,,
∵是等腰三角形,
∴,,
∴,
∴,
∴;
(2)∵是正方形,
∴,,
∵是等腰三角形,
∴,
∵,
∵,
∴,
∴,
∴,
∴,
∴,
;
(3)由(1)得,,,
∴,
由(2),
∴,
∵,
∴,
在中,
,
∴
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點P,D分別是BC,AC邊上的點,且∠APD=∠B.
(1)求證:△ABP∽△PCD;
(2)若AB=10,BC=12,當PD∥AB時,求BP的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線經過,兩點,與x軸的另一個交點為C,頂點為D,連結CD.
(1)求該拋物線的表達式;
(2)點P為該拋物線上一動點(與點B、C不重合),設點P的橫坐標為t.
①當點P在直線BC的下方運動時,求的面積的最大值;
②該拋物線上是否存在點P,使得若存在,求出所有點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數的圖象與軸交于點,與反比例函數在第一象限內的圖象交于點,且點的橫坐標為.過點作軸交反比例函數的圖象于點,連接.
(1)求反比例函數的表達式.
(2)求的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABO的頂點A是雙曲線與直線在第二象限的交點,AB⊥軸于B且S△ABO =.
(1)求這兩個函數的解析式.
(2)求直線與雙曲線的兩個交點A,C和直線AC與x軸的交點D的坐標和△AOC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,山坡上有一棵樹AB,樹底部B點到山腳C點的距離BC為米,山坡的坡角為30°.小寧在山腳的平地F處測量這棵樹的高,點C到測角儀EF的水平距離CF=1米,從E處測得樹頂部A的仰角為45°,樹底部B的仰角為20°,求樹AB的高度.(參考數值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下面是小明同學設計的“過圓外一點作圓的切線”的尺規(guī)作圖的過程.
已知:如圖1,和外的一點.
求作:過點作的切線.
作法:如圖2,
①連接;
②作線段的垂直平分線,直線交于;
③以點為圓心,為半徑作圓,交于點和;
④作直線和.
則,就是所求作的的切線.
根據上述作圖過程,回答問題:
(1)用直尺和圓規(guī),補全圖2中的圖形;
(2)完成下面的證明:
證明:連接,,
∵由作圖可知是的直徑,
∴(______)(填依據),
∴,,
又∵和是的半徑,
∴,就是的切線(______)(填依據).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,和都是等邊三角形,且點A、C、E在同一直線上,與、分別交于點F、M,與交于點N.下列結論正確的是_______(寫出所有正確結論的序號).
①;②;③;④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com