【題目】已知正方形的對(duì)角線相交于點(diǎn)

(1)如圖1,分別是,上的點(diǎn),的延長(zhǎng)線相交于點(diǎn).若,求證:;

(2)如圖2,上的點(diǎn),過(guò)點(diǎn),交線段于點(diǎn),連結(jié)于點(diǎn),交于點(diǎn).若,

求證:;

當(dāng)時(shí),求的長(zhǎng).

【答案】(1)證明見(jiàn)解析(2)證明見(jiàn)解析

【解析】

試題分析:(1)根據(jù)正方形的性質(zhì),可根據(jù)三角形全等的判定(ASA)與性質(zhì)求證即可;

(2)同(1)中,利用上面的結(jié)論,根據(jù)SAS可證的結(jié)論;

設(shè)CH=x,然后根據(jù)正方形的性質(zhì)和相似三角形的判定與性質(zhì)可得,然后列方程求解即可.

試題解析:(1)證明:四邊形ABCD是正方形

∴AC⊥BD,OD=OC

∴∠DOG=∠COE=90°

∴∠OEC+∠OCE=90°

∵DF⊥CE

∴∠OEC+∠ODG=90°

∴∠ODG=∠OCE

∴△DOG≌△COE(ASA)

∴OE=OG

(2)證明:OD=OC,∠DOG=∠COE=90°

OE=OG

∴△DOG≌△COE(SAS

∴∠ODG=∠OCE

②解設(shè)CH=x,

∵四邊形ABCD是正方形,AB=1

∴BH=1-x

∠DBC=∠BDC=∠ACB=45°

∵EH⊥BC

∴∠BEH=∠EBH=45°

∴EH=BH=1-x

∵∠ODG=∠OCE

∴∠BDC-∠ODG=∠ACB-∠OCE

∴∠HDC=∠ECH

∵EH⊥BC

∴∠EHC=∠HCD=90°

∴△CHE∽△DCH

∴HC2=EH·CD

得x2+x-1=0

解得,(舍去)

∴HC=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】【探究函數(shù)y=x+的圖象與性質(zhì)】

(1)函數(shù)y=x+的自變量x的取值范圍是 ;

(2)下列四個(gè)函數(shù)圖象中函數(shù)y=x+的圖象大致是 ;

(3)對(duì)于函數(shù)y=x+,求當(dāng)x>0時(shí),y的取值范圍.

請(qǐng)將下列的求解過(guò)程補(bǔ)充完整.

解:x>0

y=x+=(2+(2=(2+

2≥0

y≥

[拓展運(yùn)用]

(4)若函數(shù)y=,則y的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=AC,∠BAC=α(0°<α<60°),分別以AB、BC為邊作等邊三角形ABE和等邊三角形BCD,連結(jié)CE,如圖1所示.

(1)直接寫(xiě)出∠ABD的大。ㄓ煤恋氖阶颖硎荆;
(2)判斷DC與CE的位置關(guān)系,并加以證明;
(3)在(2)的條件下,連結(jié)DE,如圖2,若∠DEC=45°,求α的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知,兩點(diǎn)的坐標(biāo)分別為,是線段上一點(diǎn)(與點(diǎn)不重合),拋物線)經(jīng)過(guò)點(diǎn),,頂點(diǎn)為,拋物線)經(jīng)過(guò)點(diǎn),,頂點(diǎn)為,,的延長(zhǎng)線相交于點(diǎn)

(1)若,,求拋物線,的解析式;

(2)若,求的值;

(3)是否存在這樣的實(shí)數(shù)),無(wú)論取何值,直線都不可能互相垂直?若存在,請(qǐng)直接寫(xiě)出的兩個(gè)不同的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為4的正方形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E是AD邊上一點(diǎn),連接CE,把△CDE沿CE翻折,得到△CPE,EP交AC于點(diǎn)F,CP交BD于點(diǎn)G,連接PO,若PO∥BC,則四邊形OFPG的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某蒜薹生產(chǎn)基地喜獲豐收,收獲蒜薹200噸.經(jīng)市場(chǎng)調(diào)查,可采用批發(fā)、零售、冷庫(kù)儲(chǔ)藏后銷(xiāo)售三種方式,并按這三種方式銷(xiāo)售,計(jì)劃平均每噸的售價(jià)及成本如下表:

銷(xiāo)售方式

批發(fā)

零售

儲(chǔ)藏后銷(xiāo)售

售價(jià)(元/噸)

3000

4500

5500

成本(元/噸)

700

1000

1200

若經(jīng)過(guò)一段時(shí)間,蒜薹按計(jì)劃全部售出獲得的總利潤(rùn)為y(元),蒜薹零售x(噸),且零售量是批發(fā)量的
(1)求y與x之間的函數(shù)關(guān)系式;
(2)由于受條件限制,經(jīng)冷庫(kù)儲(chǔ)藏售出的蒜薹最多80噸,求該生產(chǎn)基地按計(jì)劃全部售完蒜薹獲得的最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ab,c是三角形的三邊,那么代數(shù)式(a﹣b2﹣c2的值( )

A. 大于零 B. 小于零 C. 等于零 D. 不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的中線,是線段上一點(diǎn)(不與點(diǎn)重合).于點(diǎn),連結(jié)

(1)如圖1,當(dāng)點(diǎn)重合時(shí),求證:四邊形是平行四邊形;

(2)如圖2,當(dāng)點(diǎn)不與重合時(shí),(1)中的結(jié)論還成立嗎?請(qǐng)說(shuō)明理由.

(3)如圖3,延長(zhǎng)于點(diǎn),若,且

的度數(shù);

當(dāng)時(shí),求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明用30厘米的鐵絲圍成一斜邊等于13厘米的直角三角形,設(shè)該直角三角形一直角邊長(zhǎng)x厘米,根據(jù)題意列方程為

查看答案和解析>>

同步練習(xí)冊(cè)答案