【題目】同學(xué)們都知道,表示5與 -2之差的絕對值,實際上也可以理解為 5 與 -2兩數(shù)在數(shù)軸上所對的兩點之間的距離,則使得這樣的整數(shù)____個.

【答案】7

【解析】

要求的整數(shù)值可以進(jìn)行分段計算,令x-1=0x+5=0時,分為3段進(jìn)行計算,最后確定的值.

x-1=0x+5=0時,則x=-5x=1

當(dāng)x-5,

-x-1-x+5=6,

-x+1-x-5=6,

x=-5(范圍內(nèi)不成立)

當(dāng)-5≤x1,

-x-1+x+5=6,

-x+1+x+5=6,

6=6,

x=-5-4、-3、-2-1、0.

當(dāng)x≥1,

∴(x-1+x+5=6,

x-1+x+5=6

2x=2,

x=1,

∴綜上所述,符合條件的整數(shù)x有:-5-4、-3、-2、-1、01,共7.

故答案為:7

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個多位自然數(shù)的任意兩個相鄰數(shù)位上,左邊數(shù)位上的數(shù)總比右邊數(shù)位上的數(shù)小1,那么我們把這樣的自然數(shù)叫做相連數(shù),例如:2344567,56789,......都是相連數(shù)”.

1)請直接寫出最大的兩位相連數(shù)與最小的三位相連數(shù),并求它們的和;

2)若某個相連數(shù)恰好等于其個位數(shù)的576倍,求這個相連數(shù)”.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,以AC為直徑作BC于點D,過點DFEAB于點E,交AC的延長線于點F.

(1)求證: EF相切;

(2)AE=6,,求EB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線AB∥CD,直線EFAB于點E,交CD于點F,點G和點H分別是直線ABCD上的動點,作直線GHEI平分∠AEF,HI平分∠CHGEIHI交于點I.

1)如圖,點G在點E的左側(cè),點H在點F的右側(cè),若∠AEF=70°,∠CHG=60°,求∠ETH的度數(shù).

2)如圖,點G在點E的右側(cè),點H也在點F的右側(cè),若∠AEF=,∠CHG=β,其他條件不變,求∠ETH的度數(shù).

3)如圖,點G在點E的右側(cè),點H也在點F的右側(cè),∠GHC的平分線HJ交∠KEG的平分線EJ于點J.其他條件不變,若∠AEF=,∠CHG=β,求∠EJH的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,點E、F分別在ABCD上,且AE=CF

(1)求證:ADE≌△CBF;

(2)若DF=BF,求證:四邊形DEBF為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形,邊上一點, 交于點,已知的面積等于6, 的面積等于4,則四邊形的面積等于__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】商店要出售一種商品,出售時要在進(jìn)價的基礎(chǔ)上加上一定的利潤,其銷售量(千克)與售價(元)之間的關(guān)系如下表.

銷量/千克

售價/

1

1+0.3+0.05

2

2+0.6+0.05

3

3+0.9+0.05

4

4+1.2+0.05

...

...

1)寫出用含的式子表示售價的計算公式。

2)此商品的銷售量為10千克時,售價為多少?

3)當(dāng)售價為26.05元時,商品的銷售量為多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個數(shù)表有77列,設(shè)aij表示第i行第j列上的數(shù)(其中i=1, 2, 3, ...7,j=1, 2, 3, …,7)

例如:5行第3列上的數(shù)a53=7.

: (1) (a23 -a22)+(a52 –a53)= _________.

(2)此數(shù)表中的四個數(shù)anp,ank, amp,amk.滿足(anp -ank)+(amk -amp)=_ _________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,矩形擺放在平面直角坐標(biāo)系中,點軸上,點軸上,,,過點的直線交矩形的邊于點,且點不與點、重合,過點,軸于點,交軸于點.

(Ⅰ)若為等腰直角三角形.

①直接寫出此時點的坐標(biāo):______;直線的解析式為______;

②在軸上另有一點的坐標(biāo)為,請在直線軸上分別找一點,使的周長最小,并求出此時點的坐標(biāo)和周長的最小值.

(Ⅱ)如圖2,過點軸于點,若以、、、為頂點的四邊形是平行四邊形,求直線的解析式.

查看答案和解析>>

同步練習(xí)冊答案