【題目】某地質(zhì)量監(jiān)管部門對轄區(qū)內(nèi)的甲、乙兩家企業(yè)生產(chǎn)的某同類產(chǎn)品進行檢查,分別隨機抽取了 50 件產(chǎn)品并對某一項關(guān)鍵質(zhì)量指標做檢測,獲得了它們的質(zhì)量指標值 s ,并對樣本數(shù)據(jù)(質(zhì)量指標值 s )進行了整理、描述和分析.下面給出了部分信息.
a.該質(zhì)量指標值對應(yīng)的產(chǎn)品等級如下:
質(zhì)量指標值 | 20 ≤ s 25 | 25 ≤ s 30 | 30 ≤ s 35 | 35 ≤ s 40 | 40 ≤ s ≤ 45 |
等級 | 次品 | 二等品 | 一等品 | 二等品 | 次品 |
說明:等級是一等品,二等品為質(zhì)量合格(其中等級是一等品為質(zhì)量優(yōu)秀); 等級是次品為質(zhì)量不合格.
b.甲企業(yè)樣本數(shù)據(jù)的頻數(shù)分布統(tǒng)計表如下(不完整):
c.乙企業(yè)樣本數(shù)據(jù)的頻數(shù)分布直方圖如下:
d.兩企業(yè)樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如下:
平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | |
甲企業(yè) | 31.92 | 32.5 | 34 | 11.87 |
乙企業(yè) | 31.92 | 31.5 | 31 | 15.34 |
根據(jù)以上信息,回答下列問題:
(1) m 的值為 , n 的值為 ;
(2)若從甲企業(yè)生產(chǎn)的產(chǎn)品中任取一件,估計該產(chǎn)品質(zhì)量合格的概率為 ; 若乙企業(yè)生產(chǎn)的某批產(chǎn)品共5 萬件,估計質(zhì)量優(yōu)秀的有 萬件;
(3)根據(jù)圖表數(shù)據(jù),你認為 企業(yè)生產(chǎn)的產(chǎn)品質(zhì)量較好,理由為 .(從某個角度說明推斷的合理性)
【答案】(1)10,0.64;(2)0.96,3.5;(3)甲,甲企業(yè)抽樣產(chǎn)品的方差小于乙企業(yè),產(chǎn)品的穩(wěn)定性更好
【解析】
(1)根據(jù)題意和頻數(shù)分布表中的數(shù)據(jù),可以先求的n的值,然后再求m的值;
(2)根據(jù)頻數(shù)分布表可以求得從甲企業(yè)生產(chǎn)的產(chǎn)品中任取一件,估計該產(chǎn)品質(zhì)量合格的概率,根據(jù)頻數(shù)分布直方圖可以求得乙企業(yè)生產(chǎn)的某批產(chǎn)品共5萬件,質(zhì)量優(yōu)秀的有的件數(shù);
(3)根據(jù)頻數(shù)分布直方圖和分布表可以解答本題.
(1),
,
故答案為:10,0.64;
(2)若從甲企業(yè)生產(chǎn)的產(chǎn)品中任取一件,估計該產(chǎn)品質(zhì)量合格的概率為:
,
乙企業(yè)生產(chǎn)的某批產(chǎn)品共5萬件,估計質(zhì)量優(yōu)秀的有:5×=3.5(萬件),
故答案為:0.96,3.5;
(3)我認為甲企業(yè)生產(chǎn)的產(chǎn)品質(zhì)量較好,
理由:甲企業(yè)抽樣產(chǎn)品的方差小于乙企業(yè),產(chǎn)品的穩(wěn)定性更好,
故答案為:甲,甲企業(yè)抽樣產(chǎn)品的方差小于乙企業(yè),產(chǎn)品的穩(wěn)定性更好.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰直角中,動點以每秒個單位長度的速度從點向終點運動,過點作于點以為鄰邊作與等腰直角的重疊部分面積為(平方單位),,點的運動時間為秒.
(1)直接寫出點落在邊上時的值.
(2)求與的函數(shù)關(guān)系式
(3)直接寫出點分別落在三邊的垂直平分線上時的值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,拋物線y=﹣x2+x+與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,對稱軸與x軸交于點D.
(1)求直線BC的解析式;
(2)如圖2,點P為直線BC上方拋物線上一點,連接PB、PC.當△PBC的面積最大時,在線段BC上找一點E(不與B、C重合),使PE+BE的值最小,求點P的坐標和PE+BE的最小值;
(3)如圖3,點G是線段CB的中點,將拋物線y=﹣x2+x+沿x軸正方向平移得到新拋物線y′,y′經(jīng)過點D,y′的頂點為F.在拋物線y′的對稱軸上,是否存在一點Q,使得△FGQ為直角三角形?若存在,直接寫出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩個工程隊共同參與一項筑路工程,甲隊單獨施工3個月,這時增加了乙隊,兩隊又共同工作了2個月,總工程全部完成,已知甲隊單獨完成全部工程比乙隊單獨完成全部工程多用2個月,設(shè)甲隊單獨完成全部工程需個月,則根據(jù)題意可列方程中錯誤的是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,,以點為圓心,以為半徑作優(yōu)弧,交于點,交于點.點在優(yōu)弧上從點開始移動,到達點時停止,連接.
(1)當時,判斷與優(yōu)弧的位置關(guān)系,并加以證明;
(2)當時,求點在優(yōu)弧上移動的路線長及線段的長.
(3)連接,設(shè)的面積為,直接寫出的取值范圍.
備用圖
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線:與軸交于兩點(在的左側(cè)),與軸交于點.
(1)求拋物線的解析式及兩點的坐標;
(2)求拋物線的頂點坐標;
(3)將拋物線向上平移3個單位長度,再向右平移個單位長度,得到拋物線.①若拋物線的頂點在內(nèi),求的取值范圍;②若拋物線與線段只有一個交點,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AD經(jīng)過⊙O上的點A,△ABC為⊙O的內(nèi)接三角形,并且∠CAD=∠B.
(1)判斷直線AD與⊙O的位置關(guān)系,并說明理由;
(2)若∠CAD=30°,⊙O的半徑為1,求圖中陰影部分的面積.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市用1200元購進一批甲玩具,用800元購進一批乙玩具,所購甲玩具件數(shù)是乙玩具件數(shù)的,已知甲玩具的進貨單價比乙玩具的進貨單價多1元.
(1)求:甲、乙玩具的進貨單價各是多少元?
(2)玩具售完后,超市決定再次購進甲、乙玩具(甲、乙玩具的進貨單價不變),購進乙玩具的件數(shù)比甲玩具件數(shù)的2倍多60件,求:該超市用不超過2100元最多可以采購甲玩具多少件?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com