【題目】如圖,EF分別是ABCD的邊AD,BC上的點(diǎn),EF=6,DEF=60,將四邊形EFCD沿EF翻折,得到 ,BC于點(diǎn)G,則GEF的周長(zhǎng)為( )

A. 6 B. 12 C. 18 D. 24

【答案】C

【解析】分析:根據(jù)折疊的性質(zhì)、平行四邊形的性質(zhì)和平行線的性質(zhì),結(jié)合已知條件可得∠GEF=60°,EFG=60°;進(jìn)而可判斷出GEF是等邊三角形,結(jié)合EF的長(zhǎng)度即可求出三角形的周長(zhǎng).

詳解:根據(jù)折疊的性質(zhì)可得∠GEF=DEF=60°.

四邊形ABCD是平行四邊形,

ADBC,

DEF=EFG=60°,

GEF中,

∵∠GEF=60°EFG=60°,

GEF是等邊三角形,

GEF的周長(zhǎng)=3×6=18.

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】的意義是數(shù)軸上表示x、y 的兩點(diǎn)之間的距離。例如:表示4 2 的差的絕對(duì)值,實(shí)際上也可以理解為 4 與—2 兩數(shù)在數(shù)軸上所對(duì)應(yīng)的兩點(diǎn)之間的距離;同理 也可以理解為 x 3 兩數(shù)在數(shù)軸上所對(duì)應(yīng)的兩點(diǎn)之間的距離。試探索:

1= ;

2)若 ,則 x= ;

3)請(qǐng)你找出符合條件的整數(shù)x ,使得

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)x>0)的圖象與一次函數(shù)y=3x的圖象相交于點(diǎn)A,其橫坐標(biāo)為2.

(1)求k的值;

(2)點(diǎn)B為此反比例函數(shù)圖象上一點(diǎn),其縱坐標(biāo)為3.過(guò)點(diǎn)BCBOA,交x軸于點(diǎn)C,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C為線段AB上一點(diǎn),點(diǎn)DBC的中點(diǎn),且AB18cm,AC4CD

1)圖中共有   條線段;

2)求AC的長(zhǎng);

3)若點(diǎn)E在直線AB上,且EA2cm,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:若四邊形中某個(gè)頂點(diǎn)與其它三個(gè)頂點(diǎn)的距離相等,則這個(gè)四邊形叫做等距四邊形,這個(gè)頂點(diǎn)叫做這個(gè)四邊形的等距點(diǎn).

(1)判斷:一個(gè)內(nèi)角為120°的菱形 等距四邊形.(填“是”或“不是”)

(2)如圖,在5×5的網(wǎng)格圖中有A、B兩點(diǎn),請(qǐng)?jiān)诖痤}卷給出的兩個(gè)網(wǎng)格圖上各找出C、D兩個(gè)格點(diǎn),使得以A、B、C、D為頂點(diǎn)的四邊形為互不全等的“等距四邊形”,畫(huà)出相應(yīng)的“等距四邊形”,并寫(xiě)出該等距四邊形的端點(diǎn)均為非等距點(diǎn)的對(duì)角線長(zhǎng).

端點(diǎn)均為非等距點(diǎn)的對(duì)角線長(zhǎng)為 端點(diǎn)均為非等距點(diǎn)的對(duì)角線長(zhǎng)為

(3)如圖,已知△ABE與△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,連結(jié)AD,AC ,BC,若四邊形ABCD是以A為等距點(diǎn)的等距四邊形,求∠BCD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A(-1,0)和點(diǎn)B(1,2),在軸上確定點(diǎn)P,使得ABP為直角三角形,則滿足這樣條件的點(diǎn)P的坐標(biāo)是____________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,的中點(diǎn)

1)求證:四邊形是平行四邊形。

2)求證:四邊形是菱形。

3)如果時(shí),求四邊形ADBE的面積

4)當(dāng) 度時(shí),四邊形是正方形(不證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y2x+4x軸交于點(diǎn)A,與y軸交于點(diǎn)B,過(guò)點(diǎn)B的直線交x軸于C,且ABC面積為10

1)求點(diǎn)C的坐標(biāo)及直線BC的解析式;

2)如圖1,設(shè)點(diǎn)F為線段AB中點(diǎn),點(diǎn)Gy軸上一動(dòng)點(diǎn),連接FG,以FG為邊向FG右側(cè)作正方形FGQP,在G點(diǎn)的運(yùn)動(dòng)過(guò)程中,當(dāng)頂點(diǎn)Q落在直線BC上時(shí),求點(diǎn)G的坐標(biāo);

3)如圖2,若M為線段BC上一點(diǎn),且滿足SAMBSAOB,點(diǎn)E為直線AM上一動(dòng)點(diǎn),在x軸上是否存在點(diǎn)D,使以點(diǎn)D,EB,C為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,點(diǎn)O是邊BC的中點(diǎn),連接DO并延長(zhǎng),交AB延長(zhǎng)線于點(diǎn)E,連接BDEC

(1)求證:四邊形BECD是平行四邊形;

(2)當(dāng)∠A50°,∠BOD100°時(shí),判斷四邊形BECD的形狀,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案