【題目】如圖,直線BC與半徑為6的⊙O相切于點B,點M是圓上的動點,過點M作MC⊥BC,垂足為C,MC與⊙O交于點D,AB為⊙O的直徑,連接MA、MB,設MC的長為x,(6<x<12).
(1)當x=9時,求BM的長和△ABM的面積;
(2)是否存在點M,使MDDC=20?若存在,請求出x的值;若不存在,請說明理由.
【答案】(1)BM=6;S△ABM=18;(2)不存在;理由見解析.
【解析】
(1)利用切線的性質以及平行線的性質進而得出∠BMC=∠ABM以及∠BCM=∠AMB=90°,即可得出△BCM∽△AMB,根據相似三角形的性質即可求得BM的長,根據勾股定理求得BC,然后根據三角形面積公式求得△ABM的面積;
(2)首先得出四邊形OBCE為矩形,進而得出MDDC=2(x-6)(12-x),進而求出最值即可判定.
(1)∵直線BC與半徑為6的⊙O相切于點B,且AB為⊙O的直徑,
∴AB⊥BC,
又∵MC⊥BC,
∴AB∥MC,
∴∠BMC=∠ABM,
∵AB是⊙O的直徑,
∴∠AMB=90°,
∴∠BCM=∠AMB=90°,
∴△BCM∽△AMB,
∴,
∴BM2=ABMC=12×9=108,
∴BM=6,
∵BC2+MC2=BM2 ,
∴BC==3
∴S△ABM=ABBC=×12×3=18;
(2)過O作OE⊥MC,垂足為E,
∵MD是⊙O的弦, OE⊥MD,
∴ME=ED,
又∵∠CEO=∠ECB=∠OBC=90°,
∴四邊形OBCE為矩形,
∴CE=OB=6,
又∵MC=x,
∴ME=ED=MC﹣CE=x﹣6,MD=2(x﹣6),
∴CD=MC﹣MD=x﹣2(x﹣6)=12﹣x,
∴MDDC=2(x﹣6)(12﹣x)=﹣2x2+36x﹣144=﹣2(x﹣9)2+18
∵6<x<12,
∴當x=9時,MDDC的值最大,最大值是18,
∴不存在點M,使MDDC=20.
科目:初中數學 來源: 題型:
【題目】如圖,已知點 A 是反比例函數 y 在第一象限圖象上的一個動點,連接 OA,以OA 為長,OA為寬作矩形 AOCB,且點 C 在第四象限,隨著點 A 的運動,點 C 也隨之運動,但點 C 始終在反比例函數 y 的圖象上,則 k 的值為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC,以AB為直徑作⊙O交邊BC于點D,過點D作DE⊥AC交AC于點E,延長ED交AB的延長線于點F.
(1)求證:DE是⊙O的切線;
(2)若AB=8,AE=6,求BF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】點A(x1,y1)、B(x2,y2)都在某函數圖象上,且當x1<x2<0時,y1>y2,則此函數一定不是( 。
A. B. y=﹣2x+1 C. y=x2﹣1 D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如圖,在下列代數式中(1)a+b+c>0;(2)﹣4a<b<﹣2a(3)abc>0;(4)5a﹣b+2c<0; 其中正確的個數為( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com