【題目】如圖,點(diǎn)A在雙曲線y= 上,點(diǎn)B在雙曲線y= (k≠0)上,AB∥x軸,分別過(guò)點(diǎn)A、B向x軸作垂線,垂足分別為D、C,若矩形ABCD的面積是8,則k的值為( )
A.12
B.10
C.8
D.6
【答案】A
【解析】解:
∵雙曲線y= (k≠0)在第一象限,
∴k>0,
延長(zhǎng)線段BA,交y軸于點(diǎn)E,
∵AB∥x軸,
∴AE⊥y軸,
∴四邊形AEOD是矩形,
∵點(diǎn)A在雙曲線y= 上,
∴S矩形AEOD=4,
同理S矩形OCBE=k,
∵S矩形ABCD=S矩形OCBE﹣S矩形AEOD=k﹣4=8,
∴k=12.
故選A.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解比例系數(shù)k的幾何意義的相關(guān)知識(shí),掌握幾何意義:表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在半徑為5的⊙O中,AB、CD是互相垂直的兩條弦,垂足為P,且AB=CD=8,則OP的長(zhǎng)為( )
A.3
B.4
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A,B兩點(diǎn),其中點(diǎn)A(﹣1,0),點(diǎn)C(0,5),點(diǎn)D(1,8)都在拋物線上,M為拋物線的頂點(diǎn).
(1)求拋物線的函數(shù)解析式;
(2)求△MCB的面積;
(3)根據(jù)圖形直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A,B兩點(diǎn),其中點(diǎn)A(﹣1,0),點(diǎn)C(0,5),點(diǎn)D(1,8)都在拋物線上,M為拋物線的頂點(diǎn).
(1)求拋物線的函數(shù)解析式;
(2)求△MCB的面積;
(3)根據(jù)圖形直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,頂點(diǎn)為M的拋物線y=a(x+1)2﹣4分別與x軸相交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸相交于點(diǎn)C(0,﹣3).
(1)求拋物線的函數(shù)表達(dá)式;
(2)判斷△BCM是否為直角三角形,并說(shuō)明理由.
(3)拋物線上是否存在點(diǎn)N(點(diǎn)N與點(diǎn)M不重合),使得以點(diǎn)A,B,C,N為頂點(diǎn)的四邊形的面積與四邊形ABMC的面積相等?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,動(dòng)點(diǎn)P從(0,3)出發(fā),沿所示方向運(yùn)動(dòng),每當(dāng)碰到矩形的邊時(shí)反彈,反彈時(shí)反射角等于入射角,當(dāng)點(diǎn)P第2016次碰到矩形的邊時(shí),點(diǎn)P的坐標(biāo)為( )
A.(0,3)
B.(3,0)
C.(6,4)
D.(1,4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩列火車分別從A,B兩城同時(shí)相向勻速駛出,甲車開(kāi)往終點(diǎn)B城,乙車開(kāi)往終點(diǎn)A城,乙車比甲車早到達(dá)終點(diǎn);如圖所示,是兩車相距的路程d(千米)與行駛時(shí)間t(小時(shí))的函數(shù)的圖象.
(1)經(jīng)過(guò)小時(shí)兩車相遇;
(2)A,B兩城相距千米路程;
(3)分別求出甲、乙兩車的速度;
(4)分別求出甲車距A城的路程s甲、乙車距A城的路程s乙與t的函數(shù)關(guān)系式;(不必寫出t的范圍)
(5)當(dāng)兩車相距200千米路程時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,在Rt△ABC中,∠ACB=90°,AC=4,BC=2,D是AC邊上的一個(gè)動(dòng)點(diǎn),將△ABD沿BD所在直線折疊,使點(diǎn)A落在點(diǎn)P處.
(1)如圖1,若點(diǎn)D是AC中點(diǎn),連接PC.
①寫出BP,BD的長(zhǎng);
②求證:四邊形BCPD是平行四邊形.
(2)如圖2,若BD=AD,過(guò)點(diǎn)P作PH⊥BC交BC的延長(zhǎng)線于點(diǎn)H,求PH的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com