【題目】某工廠將地處A,B兩地的兩個小工廠合成一個大廠,為了方便A,B兩地職工的聯(lián)系,企業(yè)準備在相距2kmA,B兩地之間修一條筆直的公路(即圖中的線段AB),經(jīng)測量在A地的北偏東60°方向,B地的北偏西45°方向的C處有一以C點為中心,半徑為0.7km的圓形公園,則修筑的這條公路會不會穿過公園?為什么?(提示:判斷以點C為圓心的圓與AB的關(guān)系)

【答案】計劃修筑的這條公路不會穿過公園

【解析】

要判斷是否穿過公園,只需求得點CAB的垂線段的長度,然后和半徑進行比較即可.

過點CCDAB,垂足為D.

∵∠CBA=45°,

∴∠BCD=45°,

CD=BD,

設(shè)CD=x,則BD=x,由∠CAB=30°AC=2x,

AD==x,

x+x=2,x=-1,

CD=-1≈0.732(km)>0.7km,

也就是說,C為圓心,0.7km為半徑的圓與AB相離.

所以計劃修筑的這條公路不會穿過公園.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰ABC中,B=90°,AM是ABC的角平分線,過點M作MNAC于點N,EMF=135°.將EMF繞點M旋轉(zhuǎn),使EMF的兩邊交直線AB于點E,交直線AC于點F,請解答下列問題:

(1)當(dāng)EMF繞點M旋轉(zhuǎn)到如圖的位置時,求證:BE+CF=BM;

(2)當(dāng)EMF繞點M旋轉(zhuǎn)到如圖,圖的位置時,請分別寫出線段BE,CF,BM之間的數(shù)量關(guān)系,不需要證明;

(3)在(1)和(2)的條件下,tan∠BEM=,AN=+1,則BM=   ,CF=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示,(每個小方格都是邊長為1個單位長度的正方形).

(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1;

(2)將△ABC繞著點A順時針旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后得到的△A2B2C2,并直接寫出點B2,C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,∠ABC、∠ADC的平分線分別交AD、BC于點E、F,求證:四邊形BEDF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點A、B的坐標(biāo)分別為(-,0)(0,-1),把點A繞坐標(biāo)原點O順時針旋轉(zhuǎn)135°得點C,若點C在反比例函數(shù)y=的圖象上.

1)求反比例函數(shù)的表達式;

2)若點Dy軸上,點E在反比例函數(shù)y=的圖象上,且以點A、B、D、E為頂點的四邊形是平行四邊形.請畫出滿足題意的示意圖并在示意圖的下方直接寫出相應(yīng)的點D、E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電腦經(jīng)銷商計劃購進一批電腦機箱和液晶顯示器,若購電腦機箱10臺和液液晶顯示器8臺,共需要資金7000元;若購進電腦機箱2臺和液示器5臺,共需要資金4120元.

1)每臺電腦機箱、液晶顯示器的進價各是多少元?

2)該經(jīng)銷商購進這兩種商品共50臺,而可用于購買這兩種商品的資金不超過22240元.根據(jù)市場行情,銷售電腦機箱、液晶顯示器一臺分別可獲利10元和160元.該經(jīng)銷商希望銷售完這兩種商品,所獲利潤不少于4100元.試問:該經(jīng)銷商有哪幾種進貨方案?哪種方案獲利最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一元二次方程x2﹣4x+k=0有兩個不相等的實數(shù)根

(1)求k的取值范圍;

(2)如果k是符合條件的最大整數(shù),且一元二次方程x2﹣4x+k=0x2+mx﹣1=0有一個相同的根,求此時m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l 在平面直角坐標(biāo)系中,直線l與y軸交于點A,點B(-3,3)也在直線1上,將點B先向右平移1個單位長度、再向下平移2個單位長度得到點C,點C恰好也在直線l上。

(1)求點C的坐標(biāo)和直線l的解析式

(2)若將點C先向左平移3個單位長度,再向上平移6個單位長度得到點D,請你判斷點D是否在直線l上;

(3)已知直線l:y=x+b經(jīng)過點B,與y軸交于點E,求△ABE的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A,B兩點,點P在以C(﹣2,0)為圓心,1為半徑的⊙C上,QAP的中點,已知OQ長的最大值為,則k的值為( 。

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案