【題目】如圖,已知點(diǎn)C與某建筑物底端B相距306米(點(diǎn)C與點(diǎn)B在同一水平面上),某同學(xué)從點(diǎn)C出發(fā),沿同一剖面的斜坡CD行走195米至坡頂D處,斜坡CD的坡度(或坡比)i=1:2.4,在D處測(cè)得該建筑物頂端A的俯視角為20°,則建筑物AB的高度約為(精確到0.1米,參考數(shù)據(jù):sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)( )
A. 29.1米 B. 31.9米 C. 45.9米 D. 95.9米
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)y=(k≠0)的圖象過點(diǎn)A(-3,2).
(1)求這個(gè)反比例函數(shù)的解析式;
(2)若B(x1,y1),C(x2,y2),D(x3,y3)是這個(gè)反比例函數(shù)圖象上的三個(gè)點(diǎn),若x1>x2>0>x3,請(qǐng)比較y1,y2,y3的大小,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的頂點(diǎn),與正方形的頂點(diǎn),同在一段拋物線上,且拋物線的頂點(diǎn)同時(shí)落在和軸上,正方形邊與同時(shí)落在軸上,若正方形的邊長(zhǎng)為,則正方形的邊長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實(shí)驗(yàn)中學(xué)本學(xué)期組織開展課外興趣活動(dòng),各活動(dòng)小班根據(jù)實(shí)際情況確定了計(jì)劃組班人數(shù),并發(fā)動(dòng)學(xué)生自愿報(bào)名,報(bào)名人數(shù)與計(jì)劃人數(shù)的前5位情況如下:
小班名稱 | 奧數(shù) | 寫作 | 舞蹈 | 籃球 | 航模 |
報(bào)名人數(shù) | 215 | 201 | 154 | 76 | 65 |
小班名稱 | 奧數(shù) | 舞蹈 | 寫作 | 合唱 | 書法 |
計(jì)劃人數(shù) | 120 | 100 | 90 | 80 | 70 |
若用同一小班的報(bào)名人數(shù)與計(jì)劃人數(shù)的比值大小來衡量進(jìn)入該班的難易程度,則由表中數(shù)據(jù),可預(yù)測(cè)( )
A. 奧數(shù)比書法容易 B. 合唱比籃球容易 C. 寫作比舞蹈容易 D. 航模比書法容易
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與反比例函數(shù)的圖像在第一象限有一個(gè)公共點(diǎn),其橫坐標(biāo)為1,則一次函數(shù)的圖像可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017安徽。┤鐖D,游客在點(diǎn)A處做纜車出發(fā),沿A﹣B﹣D的路線可至山頂D處,假設(shè)AB和BD都是直線段,且AB=BD=600m,α=75°,β=45°,求DE的長(zhǎng).
(參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,≈1.41)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)興趣小組同學(xué)進(jìn)行測(cè)量大樹CD高度的綜合實(shí)踐活動(dòng),如圖,在點(diǎn)A處測(cè)得直立于地面的大樹頂端C的仰角為36°,然后沿在同一剖面的斜坡AB行走13米至坡頂B處,然后再沿水平方向行走6米至大樹腳底點(diǎn)D處,斜面AB的坡度(或坡比)i=1:2.4,那么大樹CD的高度約為( )(參考數(shù)據(jù):sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)
A. 8.1米 B. 17.2米 C. 19.7米 D. 25.5米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,五邊形是邊長(zhǎng)為的正五邊形,是正五邊形的外接圓,過點(diǎn)作的切線,與、的延長(zhǎng)線交分別于點(diǎn)和,延長(zhǎng)、相交于點(diǎn),那么的長(zhǎng)度是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中的∠A與∠B滿足(1-tanA)2+=0.
(1)試判斷△ABC的形狀;
(2)求(1+sinA)2-2-(3+tanC)0的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com