【題目】為確保信息安全,信息需要加密傳輸,其原理如下:

現(xiàn)將10個數(shù)字按圖所示排成一個圈,并設(shè)置了一種數(shù)字信息的加密規(guī)則:加密鑰匙為“n&3”,“n&3”代表“把明文n換成圖中從它開始順時針跳過3個數(shù)字的那個數(shù)字”,例如明文是5時,對應(yīng)的密文為9.若收到的密文是6452,那么通過解密,它對應(yīng)的明文是______

【答案】2018

【解析】

根據(jù)“n&3”代表把明文n換成圖中從它開始順時針跳過3個數(shù)字的那個數(shù)字,找到密文是6452,各個數(shù)位對應(yīng)的數(shù)字即可求解.

“n&3”代表把明文n換成圖中從它開始順時針跳過3個數(shù)字的那個數(shù)字”,

6-4=2,

4-4=0,

5-4=1,

2+10-4=8.

故它對應(yīng)的明文是2018.

故答案為:2018.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是一塊綠化帶,將陰影部分修建為花圃,已知AB=15,AC=9,BC=12,陰影部分是△ABC的內(nèi)切圓,一只自由飛翔的小鳥將隨機落在這塊綠化帶上,則小鳥落在花圃上的概率為( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y= 的圖象在二四象限,一次函數(shù)為y=kx+b(b>0),直線x=1與x軸交于點B,與直線y=kx+b交于點A,直線x=3與x軸交于點C,與直線y=kx+b交于點D.
(1)若點A,D都在第一象限,求證:b>﹣3k;
(2)在(1)的條件下,設(shè)直線y=kx+b與x軸交于點E與y軸交于點F,當(dāng) = 且△OFE的面積等于 時,求這個一次函數(shù)的解析式,并直接寫出不等式 >kx+b的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】6分)下面是小馬虎解的一道題

題目:在同一平面上,若BOA=70°,BOC=15°AOC的度數(shù).

解:根據(jù)題意可畫出圖,

∵∠AOC=∠BOABOC

=70°15°

=55°

∴∠AOC=55°

若你是老師,會判小馬虎滿分嗎?若會,說明理由.若不會,請將小馬虎的的錯誤指出,并給出你認(rèn)為正確的解法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小芳在本學(xué)期的體育測試中,1分鐘跳繩獲得了滿分,她的滿分秘籍如下:前20秒由于體力好,小芳速度均勻增加,20秒至50秒保持跳繩速度不變,后10秒進行沖刺,速度再次均勻增加,最終獲得滿分,反映小芳1分鐘內(nèi)跳繩速度y(/秒)與時間t(秒)關(guān)系的函數(shù)圖象大致為( 。

A. A B. B C. C D. D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,對稱軸為直線x= 的拋物線經(jīng)過點A(6,0)和B(0,﹣4).
(1)求拋物線解析式及頂點坐標(biāo);
(2)設(shè)點E(x,y)是拋物線上一動點,且位于第一象限,四邊形OEAF是以O(shè)A為對角線的平行四邊形,求平行四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式;
(3)當(dāng)(2)中的平行四邊形OEAF的面積為24時,請判斷平行四邊形OEAF是否為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩地相距900km,一列快車從甲地開往乙地,一列慢車從乙地開往甲地,兩車同時出發(fā),行了4小時后兩車相遇,快車的速度是慢車速度的2倍.

(1)請求出慢車與快車的速度?

(2)兩車出發(fā)后多長時間,它們相距225千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OABC是一張放在平面直角坐標(biāo)系中的長方形紙片,O為原點,點Ax軸的正半軸上,點Cy軸的正半軸上,OA=10 ,OC=8.在OC邊上取一點D,將紙片沿AD翻折,使點O落在BC邊上的點E.

(1)求CEOD的長;

(2)求直線DE的表達式;

(3)直線y=kx+bDE平行,當(dāng)它與矩形OABC有公共點時,直接寫出b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用正方形硬紙板做三棱柱盒子,每個盒子由3個矩形側(cè)面和2個正三角形底面組成。硬紙板以如圖兩種方式裁剪(裁剪后邊角料不再利用)

A方法:剪6個側(cè)面; B方法:剪4個側(cè)面和5個底面。

現(xiàn)有19張硬紙板,裁剪時張用A方法,其余用B方法。

1)用的代數(shù)式分別表示裁剪出的側(cè)面和底面的個數(shù);

2)若裁剪出的側(cè)面和底面恰好全部用完,問能做多少個盒子?

查看答案和解析>>

同步練習(xí)冊答案