如圖,已知兩個菱形ABCD.CEFG,其中點A.C.F在同一直線上,連接BE、DG.
(1)在不添加輔助線時,寫出其中的兩對全等三角形;
(2)證明:BE=DG.
(1)△ADC≌△ABC,△GFC≌△EFC;(2)見解析
【解析】(1)解:△ADC≌△ABC,△GFC≌△EFC;
(2)證明:∵四邊形ABCD.CEFG是菱形,
∴DC=BC,CG=CE,∠DCA=∠BCA,∠GCF=∠ECF,
∵∠ACF=180°,
∴∠DCG=∠BCE,
在△DCG和△BCE中
∵,
∴△DCG≌△BCE,
∴BE=DG.
(1)△ADC≌△ABC,△GFC≌△EFC,根據(jù)菱形的性質(zhì)推出AD=AB,DC=BC,根據(jù)SSS即可證出結論;
(2)根據(jù)菱形性質(zhì)求出DC=BC,CG=CE,推出∠DCG=∠BCE,根據(jù)SAS證出△DCG≌△BCE即可.
科目:初中數(shù)學 來源: 題型:
1 | 3 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:2012年初中畢業(yè)升學考試(江西卷)數(shù)學(帶解析) 題型:解答題
如圖,已知兩個菱形ABCD.CEFG,其中點A.C.F在同一直線上,連接BE、DG.
(1)在不添加輔助線時,寫出其中的兩對全等三角形;
(2)證明:BE=DG.
查看答案和解析>>
科目:初中數(shù)學 來源:第34章《二次函數(shù)》中考題集(35):34.4 二次函數(shù)的應用(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com