如圖1,已知四邊形ABCD,點(diǎn)P為平面內(nèi)一動點(diǎn).如果∠PAD=∠PBC,那么我們稱點(diǎn)P為四邊形ABCD關(guān)于A、B的等角點(diǎn).如圖2,以點(diǎn)B為坐標(biāo)原點(diǎn),BC所在直線為x軸建立平面直角坐標(biāo)系,點(diǎn)C的橫坐標(biāo)為6.
(1)若A、D兩點(diǎn)的坐標(biāo)分別為A(0,4)、D(6,4),當(dāng)四邊形ABCD關(guān)于A、B的等角點(diǎn)P在DC邊上時(shí),則點(diǎn)P的坐標(biāo)為
 
;
(2)若A、D兩點(diǎn)的坐標(biāo)分別為A(2,4)、D(6,4),當(dāng)四邊形ABCD關(guān)于A、B的等角點(diǎn)P在DC邊上時(shí),求點(diǎn)P的坐標(biāo);
(3)若A、D兩點(diǎn)的坐標(biāo)分別為A(2,4)、D(10,4),點(diǎn)P(x,y)為四邊形ABCD關(guān)于A、B的等角點(diǎn),其中x>2,y>0,求y與x之間的關(guān)系式.
精英家教網(wǎng)
分析:(1)畫出點(diǎn)A、D坐標(biāo),根據(jù)四邊形ABCD是矩形可得點(diǎn)P在CD的中點(diǎn)處,寫出相應(yīng)坐標(biāo)即可;
(2)易得點(diǎn)P的橫坐標(biāo)為6,利用△PAD∽△PBC可得點(diǎn)P的縱坐標(biāo);
(3)可分點(diǎn)P在直線AD的上方,或下方兩種情況進(jìn)行探討:當(dāng)點(diǎn)P在直線AD的上方時(shí),點(diǎn)P在線段BA的延長線上,利用點(diǎn)A的坐標(biāo)可得相關(guān)代數(shù)式;當(dāng)點(diǎn)P在直線AD的下方時(shí),利用(2)中的相似可得相關(guān)代數(shù)式.
解答:解:(1)精英家教網(wǎng)
由圖中可以看出P(6,2).
故答案為(6,2);
(2)精英家教網(wǎng)
依題意可得∠D=∠BCD=90°,∠PAD=∠PBC,AD=4,CD=4,BC=6.
∴△PAD∽△PBC,
PD
PC
=
AD
BC
=
4
6

∵PD+PC=CD=4,
PC=
12
5

∴點(diǎn)P的坐標(biāo)為(6,
12
5
)
;

(3)根據(jù)題意可知,不存在點(diǎn)P在直線AD上的情況;
當(dāng)點(diǎn)P不在直線AD上時(shí),分兩種情況討論:
①當(dāng)點(diǎn)P在直線AD的上方時(shí),點(diǎn)P在線段BA的延長線上,此時(shí)有y=2x;
②當(dāng)點(diǎn)P在直線AD的下方時(shí),過點(diǎn)P作MN⊥x軸,分別交直線AD、BC于M、N兩點(diǎn),
與(2)同理可得△PAM∽△PBN,PM+PN=4,
由點(diǎn)P的坐標(biāo)為P(x,y),可知M、N兩點(diǎn)的坐標(biāo)分別為M(x,4)、N(x,0).
精英家教網(wǎng)
PM
PN
=
AM
BN

可得
4-y
y
=
x-2
x

y=
2x
x-1

綜上所述,當(dāng)x>2,y>0時(shí),y與x之間的關(guān)系式為y=2x或y=
2x
x-1
點(diǎn)評:主要考查了相似三角形的應(yīng)用;易錯(cuò)點(diǎn)在于分情況探討等角點(diǎn)的位置;難點(diǎn)在于利用相似三角形的判定與性質(zhì)得到點(diǎn)P的縱坐標(biāo).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀與理解:
三角形的中線的性質(zhì):三角形的中線等分三角形的面積,
即如圖1,AD是△ABC中BC邊上的中線,
S△ABD=S△ACD=
1
2
S△ABC

理由:∵BD=CD,∴S△ABD=
1
2
BD×AH=
1
2
CD×AH=S△ACD
=
1
2
S△ABC
,
即:等底同高的三角形面積相等.
操作與探索
在如圖2至圖4中,△ABC的面積為a.
(1)如圖2,延長△ABC的邊BC到點(diǎn)D,使CD=BC,連接DA.若△ACD的面積為S1,則S1=
 
(用含a的代數(shù)式表示);
(2)如圖3,延長△ABC的邊BC到點(diǎn)D,延長邊CA到點(diǎn)E,使CD=BC,AE=CA,連接DE.若△DEC的面積為S2,則S2=
 
(用含a的代數(shù)式表示),并寫出理由;
(3)在圖3的基礎(chǔ)上延長AB到點(diǎn)F,使BF=AB,連接FD,F(xiàn)E,得到△DEF(如圖4).若陰影部分的面積為S3,則S3=
 
(用含a的代數(shù)式表示).
精英家教網(wǎng)
拓展與應(yīng)用
如圖5,已知四邊形ABCD的面積是a,E、F、G、H分別是AB、BC、CD的中點(diǎn),求圖中陰影部分的面積?精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知四邊形ABCD是菱形,G是線段CD上的任意一點(diǎn)時(shí),連接BG交AC于F,過F作FH∥CD交BC于H,可以證明結(jié)論
FH
AB
=
FG
BG
成立.(考生不必證明)
(1)探究:如圖2,上述條件中,若G在CD的延長線上,其它條件不變時(shí),其結(jié)論是否成立?若成立,請給出證明;若不成立,請說明理由;
(2)計(jì)算:若菱形ABCD中AB=6,∠ADC=60°,G在直線CD上,且CG=16,連接BG交AC所在的直線于F,過F作FH∥CD交BC所在的直線于H,求BG與FG的長.
(3)發(fā)現(xiàn):通過上述過程,你發(fā)現(xiàn)G在直線CD上時(shí),結(jié)論
FH
AB
=
FG
BG
還成立嗎?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xoy中,將面積為3的直角三角形AGO沿直線y=x翻折,得到三角形CHO,連接AC,已知反比例函數(shù)y=
kx
(x>0)
的圖象過A、C兩點(diǎn),如圖①.
(1)k的值是
 

(2)在直線y=x圖象上任取一點(diǎn)D,作AB⊥AD,AC⊥CB,線段OD交AC于點(diǎn)F,交AB于點(diǎn)E,P為直線OD上一動點(diǎn),連接PB、PC、CE.
㈠如圖②,已知點(diǎn)A的橫坐標(biāo)為1,當(dāng)四邊形AECD為正方形時(shí),求三角形PBC的面積;
㈡如圖③,若已知四邊形PEBC為菱形,求證四邊形PBCD是平行四邊形;
㈢若D、P兩點(diǎn)均在直線y=x上運(yùn)動,當(dāng)∠ADC=60°,且三角形PBC的周長最小時(shí),請直接寫出三角形PBC與四邊形ABCD的面積之比.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•太原一模)如圖1,已知四邊形ABCD是正方形,對角線AC、BD相交于點(diǎn)E,以點(diǎn)E為頂點(diǎn)作正方形EFGH,使點(diǎn)A、D分別在EH和EF上,連接BH、AF.
(1)判斷并說明BH和AF的數(shù)量關(guān)系;
(2)將正方形EFGH繞點(diǎn)E順時(shí)針方向旋轉(zhuǎn)θ(0°≤θ≤360°),設(shè)AB=a,EH=b,且a<2b.
①如圖2,連接AG,設(shè)AG=x,請直接寫出x的取值范圍;當(dāng)x取最大值時(shí),直接寫出θ的值;
②如果四邊形ABDH是平行四邊形,請?jiān)趥溆脠D中補(bǔ)全圖形,并求a與b的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將已知四邊形分別在格點(diǎn)圖中補(bǔ)成關(guān)于已知直線:l、m、n、p為對稱軸的軸對稱的圖形.

查看答案和解析>>

同步練習(xí)冊答案