【題目】綜合與探究:如圖,已知拋物線y=﹣x2+2x+3的圖象與x軸交于點A,B(A在B的右側),與y軸交于點C,對稱軸與拋物線交于點D,與x軸交于點E.

(1)求點A,B,C,D的坐標;
(2)求出△ACD的外心坐標;
(3)將△BCE沿x軸的正方向每秒向右平移1個單位,當點E移動到點A時停止運動,若△BCE與△ADE重合部分的面積為S,運動時間為t(s),請直接寫出S關于t的函數(shù)關系式,并寫出自變量的取值范圍.

【答案】
(1)

解:當y=0時,﹣x2+2x+3=0,解得:x1=﹣1,x2=3

∴點A坐標為(3,0),點B坐標為(﹣1,0),

當x=0時,代入﹣x2+2x+3=0,y=3,

∴C點坐標為(0,3)

∵y=﹣x2+2x+3=﹣(x﹣1)2+4,

∴D點的坐標為(1,4)


(2)

解:過點D作DF⊥y軸,垂足為F,連接AC、CD,如圖1

∵A(3,0),C(0,3),D(1,4)

∴DF=CF=1,OC=AC=3,

∴△DFC,△AOC均為等腰直角三角形;

∴∠DCF=∠ACO=45°,∴∠ACD=90°,△ACD為直角三角形;

∴斜邊AD上中點為△ACD的重心,設點P為AD的中點,

過點P作PG⊥OA,垂足為G,

∵△APG∽△ADE,

∴點G為EA的中點,

∴OG=2,PG=2,

∴點P坐標為(2,2)


(3)

解:如圖2,當0<t≤1時,EE′=t

設E′C′與DE交于點Q,根據(jù)△QEE′~△COB,求得QE=3t,

∴S= QEEE′= ×t×3t= t2;

如圖3,當1<t≤ 時,設當B′C′與DE交于點H,

根據(jù)△B′HE~△BOC,求得EH=3(2﹣t),

∵S=SC′B′E′﹣SHB′E,

∴S= ×2×3﹣ ×3(2﹣t)2

即S=﹣ t2+6t﹣3;

如圖4,當 <t≤2時,

設直線B′C′與直線DE交點為T,與直線AD的交點為K,直線AD與直線E′C′的交點為L,

∵B′(t﹣1,0),C′(t,3),E′(t+1,0),

∴直線B′C′的解析式為:y=3x+(3﹣3t),

直線E′C′的解析式為:y=﹣3x+(3+3t),

∵直線AD的解析式為y=2x+6,

∵解方程組

解得

∴K(

解方程組

解得

∴L(3t﹣3,﹣6t+12),

又∵T(1,6﹣3t),

∴DT=4﹣(6﹣3t)=3t﹣2,AE′=3﹣(t+1)=2﹣t,△DKT以DT為底邊上的高為: ﹣1=

S=SEAD﹣SDKT﹣SE′AL=4﹣ (3t﹣2) (2﹣t)(﹣6t+12),

即S=﹣ t2+ ;

∴當0<t≤1時,S= t2

當1<t≤ 時,S=﹣ t2+6t﹣3

<t≤2時,S=﹣ t2+


【解析】(1)利用函數(shù)關系式分別讓x=0及y=0可求出點A、B及點C坐標,通過配方法求得點D坐標;(2)作DF⊥y軸,連接DC、AC,利用特殊角證出△ACD為直角三角形,則通過相似三角形對應邊的比可得出外心的坐標;(3)根據(jù)運動時間t,分成0<t≤1、1<t≤ <t≤2三種情況進行討論,利用直線解析式求出交點坐標,從而將面積分別表示出來.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】
(1)如圖1,正方形ABCD中,點E,F(xiàn)分別在邊BC,CD上,∠EAF=45°,延長CD到點G,使DG=BE,連結EF,AG.求證:EF=FG.
(2)如圖,等腰直角三角形ABC中,∠BAC=90°,AB=AC,點M,N在邊BC上,且∠MAN=45°,若BM=1,CN=3,求MN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點M是△ABC的角平分線AT的中點,點D、E分別在AB、AC邊上,線段DE過點M,且∠ADE=∠C,那么△ADE和△ABC的面積比是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系xOy中,對稱軸平行于y軸的拋物線過點A(1,0)、B(3,0)和C(4,6);

(1)求拋物線的表達式;
(2)現(xiàn)將此拋物線先沿x軸方向向右平移6個單位,再沿y軸方向平移k個單位,若所得拋物線與x軸交于點D、E(點D在點E的左邊),且使△ACD∽△AEC(頂點A、C、D依次對應頂點A、E、C),試求k的值,并注明方向.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了加快我省城鄉(xiāng)公路建設,我省計劃“十三五”期間高速公路運營里程達1000公里,進一步打造城鄉(xiāng)快速連接通道,某地計劃修建一條高速公路,需在小山東西兩側A,B之間開通一條隧道,工程技術人員乘坐熱氣球對小山兩側A、B之間的距離進行了測量,他們從A處乘坐熱氣球出發(fā),由于受西風的影響,熱氣球以30米/分的速度沿與地面成75°角的方向飛行,25分鐘后到達C處,此時熱氣球上的人測得小山西側B點的俯角為30°,則小山東西兩側A、B兩點間的距離為多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了選拔學生參加“漢字聽寫大賽”,對九年級一班、二班各10名學生進行漢字聽寫測試.計分采用10分制(得分均取整數(shù)),成績達到6分或6分以上為及格,得到9分為優(yōu)秀,成績如表1所示,并制作了成績分析表(表2). 表1

一班

5

8

8

9

8

10

10

8

5

5

二班

10

6

6

9

10

4

5

7

10

8

表2

班級

平均數(shù)

中位數(shù)

眾數(shù)

方差

及格率

優(yōu)秀率

一班

7.6

8

a

3.82

70%

30%

二班

b

7.5

10

4.94

80%

40%


(1)在表2中,a= , b=
(2)有人說二班的及格率、優(yōu)秀率均高于一班,所以二班比一班好;但也有人認為一班成績比二班好,請你給出堅持一班成績好的兩條理由;
(3)一班、二班獲滿分的中同學性別分別是1男1女、2男1女,現(xiàn)從這兩班獲滿分的同學中各抽1名同學參加“漢字聽寫大賽”,用樹狀圖或列表法求出恰好抽到1男1女兩位同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若函數(shù)y=x2﹣3|x﹣1|﹣4x﹣3﹣b(b為常數(shù))的圖象與x軸恰好有三個交點,則常數(shù)b的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點E是邊AD上一點,且AE=2ED,EC交對角線BD于點F,則 等于(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AB是⊙O的直徑,AT是⊙O的切線,∠ABT=50°,BT交⊙O于點C,E是AB上一點,延長CE交⊙O于點D.
(1)如圖①,求∠T和∠CDB的大小;
(2)如圖②,當BE=BC時,求∠CDO的大。

查看答案和解析>>

同步練習冊答案