分析 ①結(jié)合非負數(shù)的性質(zhì)求得a、b的值,則易得AB=12;
②根據(jù)線段中點的性質(zhì)求得AN=PN-AP=(2t+3)-2t=3;
③需要分類討論:點R在點P的左側(cè)和點R在點P的右側(cè)兩種情況.
解答 解:①∵(a-2)2+|b+10|=0,
∴a=2,b=-10,
∴點A表示的數(shù)是2,點B表示的數(shù)是-10,
∴線段AB的長度是:|2-(-10)|=12,即AB=12;
②∵點Q從B出發(fā)以4個單位每秒向左運動,
∴BQ=4t,
∴AQ=BQ+AB=4t+12.
∵M為AQ的中點,
∴AM=$\frac{1}{2}$AQ=2t+6.
∵P點從A出發(fā)以2個單位每秒向右運動,
∴AP=2t,
∴PM=AM+AP=2t+6+2t=4t+6.
∵點N是PM的中點PN=$\frac{1}{2}$PM=2t+3,
∴AN=PN-AP=(2t+3)-2t=3;
③當點R在點P的左側(cè)時
4t=(2+2t)-(-1+8t)
t=$\frac{3}{10}$
當點R在點P的右側(cè)時
4t=(-1+8t)-(2+2t)
t=$\frac{3}{2}$
∴當t=$\frac{3}{10}$或t=$\frac{3}{2}$時BQ=PR.
點評 此題考查一元一次方程的實際運用,掌握兩點之間的距離求法以及行程問題中的基本數(shù)量關(guān)系是解決問題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\frac{\sqrt{5}}{5}$ | C. | $\sqrt{5}$ | D. | 5 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | SSS | B. | AAS | C. | SAS | D. | HL |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com