【題目】如圖,正方形ABCD中,AB=6,點E在邊CD上,且CE=2DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連結AG、CF.下列結論:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FGC=3.6.其中正確結論的個數是( )
A.2
B.3
C.4
D.5
【答案】D
【解析】解:∵正方形ABCD的邊長為6,CE=2DE,
∴DE=2,EC=4,
∵把△ADE沿AE折疊使△ADE落在△AFE的位置,
∴AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,
在Rt△ABG和Rt△AFG中
,
∴Rt△ABG≌Rt△AFG(HL),
∴GB=GF,∠BAG=∠FAG,
∴∠GAE=∠FAE+∠FAG= ∠BAD=45°,所以①正確;
設BG=x,則GF=x,C=BC﹣BG=6﹣x,
在Rt△CGE中,GE=x+2,EC=4,CG=6﹣x,
∵CG2+CE2=GE2 ,
∴(6﹣x)2+42=(x+2)2 , 解得x=3,
∴BG=3,CG=6﹣3=3
∴BG=CG,所以②正確;
∵EF=ED,GB=GF,
∴GE=GF+EF=BG+DE,所以③正確;
∵GF=GC,
∴∠GFC=∠GCF,
又∵Rt△ABG≌Rt△AFG,
∴∠AGB=∠AGF,
而∠BGF=∠GFC+∠GCF,
∴∠AGB+∠AGF=∠GFC+∠GCF,
∴∠AGB=∠GCF,
∴CF∥AG,所以④正確;
過F作FH⊥DC
∵BC⊥DH,
∴FH∥GC,
∴△EFH∽△EGC,
∴ ,
EF=DE=2,GF=3,
∴EG=5,
∴△EFH∽△EGC,
∴相似比為: = ,
∴S△FGC=S△GCE﹣S△FEC= ×3×4﹣ ×4×( ×3)= =3.6,所以⑤正確.
故正確的有①②③④⑤,
故選:D.
【考點精析】本題主要考查了正方形的性質和翻折變換(折疊問題)的相關知識點,需要掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形;折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應邊和角相等才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】平行四邊形ABCD的兩個頂點A、C在反比例函數y= (k≠0)圖象上,點B、D在x軸上,且B、D兩點關于原點對稱,AD交y軸于P點
(1)已知點A的坐標是(2,3),求k的值及C點的坐標;
(2)若△APO的面積為2,求點D到直線AC的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,延長AB至E,延長CD至F,BE=DF,連接EF,與BC、AD分別相交于P、Q兩點.
(1)求證:CP=AQ;
(2)若BP=1,PQ=2 ,∠AEF=45°,求矩形ABCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,,DE是過點A的直線,于點D,于點E,.
若BC在DE的同側如圖求證:.
若BC在DE的兩側如圖,其他條件不變,中的結論還成立嗎?不需證明
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明在學習二次根式后,發(fā)現一些含根號的式子可以寫成另一個式子的平方,如:3+2=(1+)2,善于思考的小明進行了以下探索:
設a+b=(m+n)2(其中a、b、m、n均為整數),則有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn,這樣小明就找到了一種把部分a+b的式子化為平方式的方法。
請我仿照小明的方法探索并解決下列問題:
(1)當a、b、m、n均為正整數時,若a+b=(m+n)2,用含m、n的式子分別表示a、b,得a=________, b=___________.
(2)若a+4=(m+n)2,且a、m、n均為正整數,求a的值。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一個不透明的袋中裝有一紅一白2個球,這些球除顏色外都相同,小剛從袋中隨機摸出一個球,記下顏色后放回袋中,再從袋中隨機摸出一個球,兩次都摸到紅球的概率是 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com