【題目】如圖,兩正方形彼此相鄰且內(nèi)接于半圓,若小正方形的面積為16cm2 , 則該半圓的半徑為( ).

A. cm
B.9 cm
C. cm
D. cm

【答案】C
【解析】如圖,圓心為A,設(shè)大正方形的邊長(zhǎng)為2x,圓的半徑為R,

∵正方形有兩個(gè)頂點(diǎn)在半圓上,另外兩個(gè)頂點(diǎn)在圓心兩側(cè),

∴AE=BC=x,CE=2x;

∵小正方形的面積為16cm2,

∴小正方形的邊長(zhǎng)EF=DF=4,

由勾股定理得,R2=AE2+CE2=AF2+DF2,

即x2+4x2=(x+4)2+42

解得,x=4,

∴R=4 cm,

故答案為:C.

觀察圖形可知正方形有兩個(gè)頂點(diǎn)在半圓上,另外兩個(gè)頂點(diǎn)在圓心兩側(cè),因此設(shè)大正方形的邊長(zhǎng)為2x,圓的半徑為R,根據(jù)小正方形的面積可求出EF=DF=4,再根據(jù)R2=AE2+CE2=AF2+DF2,建立關(guān)于x的方程,求解即可得出圓的半徑長(zhǎng)。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知多項(xiàng)式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1).

(1)若多項(xiàng)式的值與字母x的取值無(wú)關(guān),求a、b的值.

(2)在(1)的條件下,先化簡(jiǎn)多項(xiàng)式3(a2﹣ab+b2)﹣(3a2+ab+b2),再求它的值.

(3)在(1)的條件下,求(b+a2+(2b+a2+(3b+a2++(9b+a2)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形ABCD沿對(duì)角線(xiàn)AC翻折,點(diǎn)B落在點(diǎn)F處,FCADE

1)求證:AFE≌△CDF;

2)若AB=4,BC=8,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了調(diào)查八年級(jí)學(xué)生參加“乒乓”、“籃球”、“足球”、“排球”四項(xiàng)體育活動(dòng)的人數(shù),學(xué)校從八年級(jí)隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果制作了如下不完整的統(tǒng)計(jì)表、統(tǒng)計(jì)圖:

請(qǐng)你根據(jù)以上信息解答下列各題:

1a ;b ;c

2)在扇形統(tǒng)計(jì)圖中,排球所對(duì)應(yīng)的圓心角是 度;

3)若該校八年級(jí)共有600名學(xué)生,試估計(jì)該校八年級(jí)喜歡足球的人數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=6BC=8

1)用直尺和圓規(guī)作∠A的平分線(xiàn),交BC于點(diǎn)D;(要求:不寫(xiě)作法,保留作圖痕跡)

2SADCSADB .(直接寫(xiě)出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,DO平分AOC,OE平分BOC,若OAOB,

(1)當(dāng)∠BOC=30°,∠DOE_______________; 當(dāng)∠BOC=60°,∠DOE_______________

(2)通過(guò)上面的計(jì)算,猜想∠DOE的度數(shù)與∠AOB有什么關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k≠0)的圖象與x軸的交點(diǎn)坐標(biāo)為(-2,0),則下列說(shuō)法:①y隨x的增大而減小;②關(guān)于x的方程kx+b=0的解為x=-2;③kx+b>0的解集是x>-2;④b<0.其中正確的有__________.(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn) 軸交于點(diǎn) (點(diǎn) 分別在 軸的左右兩側(cè))兩點(diǎn),與 軸的正半軸交于點(diǎn) ,頂點(diǎn)為 ,已知點(diǎn) .

(1)求點(diǎn) 的坐標(biāo);
(2)判斷△ 的形狀,并說(shuō)明理由;
(3)將△ 沿 軸向右平移 個(gè)單位( )得到△ .△ 與△ 重疊部分(如圖中陰影)面積為 ,求 的函數(shù)關(guān)系式,并寫(xiě)出自變量 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:為了測(cè)量某棵樹(shù)的高度,小剛用長(zhǎng)為2m的竹竿做測(cè)量工具,移動(dòng)竹竿,使竹竿、樹(shù)的頂端的影子恰好落在地面的同一點(diǎn),此時(shí),竹竿與這一點(diǎn)距離6m,與樹(shù)相距15m,那么這棵的高度為( )

A.5米
B.7米
C.7.5米
D.21米

查看答案和解析>>

同步練習(xí)冊(cè)答案