邊長為的正方形ABCD,有一個(gè)頂點(diǎn)A在原點(diǎn),一對角線AC在x軸的正半軸上,求其余頂點(diǎn)的坐標(biāo).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知:△ABC為邊長是的等邊三角形,四邊形DEFG為邊長是6的正方形.現(xiàn)將等邊△ABC和正方形DEFG按如圖1的方式擺放,使點(diǎn)C與點(diǎn)E重合,點(diǎn)B、C(E)、F在同一條直線上,△ABC從圖1的位置出發(fā),以每秒1個(gè)單位長度的速度沿EF方向向右勻速運(yùn)動,當(dāng)點(diǎn)C與點(diǎn)F重合時(shí)暫停運(yùn)動,設(shè)△ABC的運(yùn)動時(shí)間為t秒(
).
1.在整個(gè)運(yùn)動過程中,設(shè)等邊△ABC和正方形DEFG重疊部分的面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式;
2.如圖2,當(dāng)點(diǎn)A與點(diǎn)D重合時(shí),作的角平分線EM交AE于M點(diǎn),將△ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使邊AB與邊AC重合,得到△ACN.在線段AG上是否存在H點(diǎn),使得△ANH為等腰三角形.如果存在,請求出線段EH的長度;若不存在,請說明理由.
3.如圖3,若四邊形DEFG為邊長為的正方形,△ABC的移動速度為每秒
個(gè)單位長度,其余條件保持不變.△ABC開始移動的同時(shí),Q點(diǎn)從F點(diǎn)開始,沿折線FG-GD以每秒
個(gè)單位長度開始移動,△ABC停止運(yùn)動時(shí),Q點(diǎn)也停止運(yùn)動.設(shè)在運(yùn)動過程中,DE交折線BA-AC于P點(diǎn),則是否存在t的值,使得
,若存在,請求出t的值;若不存在,請說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆重慶市重慶一中九年級上學(xué)期期末考試數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖,已知:△ABC為邊長是的等邊三角形,四邊形DEFG為邊長是6的正方形.現(xiàn)將等邊△ABC和正方形DEFG按如圖1的方式擺放,使點(diǎn)C與點(diǎn)E重合,點(diǎn)B、C(E)、F在同一條直線上,△ABC從圖1的位置出發(fā),以每秒1個(gè)單位長度的速度沿EF方向向右勻速運(yùn)動,當(dāng)點(diǎn)C與點(diǎn)F重合時(shí)暫停運(yùn)動,設(shè)△ABC的運(yùn)動時(shí)間為t秒(
).
【小題1】在整個(gè)運(yùn)動過程中,設(shè)等邊△ABC和正方形DEFG重疊部分的面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式;
【小題2】如圖2,當(dāng)點(diǎn)A與點(diǎn)D重合時(shí),作的角平分線EM交AE于M點(diǎn),將△ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使邊AB與邊AC重合,得到△ACN.在線段AG上是否存在H點(diǎn),使得△ANH為等腰三角形.如果存在,請求出線段EH的長度;若不存在,請說明理由.
【小題3】如圖3,若四邊形DEFG為邊長為的正方形,△ABC的移動速度為每秒
個(gè)單位長度,其余條件保持不變.△ABC開始移動的同時(shí),Q點(diǎn)從F點(diǎn)開始,沿折線FG-GD以每秒
個(gè)單位長度開始移動,△ABC停止運(yùn)動時(shí),Q點(diǎn)也停止運(yùn)動.設(shè)在運(yùn)動過程中,DE交折線BA-AC于P點(diǎn),則是否存在t的值,使得
,若存在,請求出t的值;若不存在,請說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市一中九年級(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(北京卷)數(shù)學(xué)(解析版) 題型:解答題
小明遇到這樣一個(gè)問題:如圖1,在邊長為的正方形ABCD各邊上分別截取AE=BF=CG=DH=1,當(dāng)∠AFQ=∠BGM=∠CHN=∠DEP=45°時(shí),求正方形MNPQ的面積。小明發(fā)現(xiàn):分別延長QE,MF,NG,PH,交FA,GB,HC,ED的延長線于點(diǎn)R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四個(gè)全等的等腰直角三角形(如圖2)請回答:
(1)若將上述四個(gè)等腰直角三角形拼成一個(gè)新的正方形(無縫隙,不重疊),則這個(gè)新的正方形的邊長為 ;
(2)求正方形MNPQ的面積。參考小明思考問題的方法,解決問題:
(3)如圖3,在等邊△ABC各邊上分別截取AD=BE=CF,再分別過點(diǎn)D,E,F(xiàn)作BC,AC,AB的垂線,得到等邊△RPQ,若,則AD的長為 。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com