【題目】如圖,在等邊△ABC中,AB=4,角BAC的平分線交BC于點D,M為AB邊中點,N是AD上的動點.
①在圖上作出使得BN+MN的和最小時點N的位置,并說明理由.
②求出BN+MN的最小值.(提示:Rt△ABC中,∠C=90°,則有AC2+BC2=AB2成立)
【答案】①詳見解析;②BN+MN最小值為2.
【解析】
①連接CM,交AD于點N,由題意可得直線AD是等邊△ABC的對稱軸,即CN=BN,則BN+MN=CN+MN,根據(jù)兩點之間,線段最短,可得當點N在CM上時,BN+MN最短;
②利用勾股定理可求CM的長度,即可得BN+MN的最小值
解:①如圖:連接CM,交AD于點N
∵AD是等邊△ABC的角平分線,
∴直線AD是等邊△ABC的對稱軸
∴BN=CN
∴BN+MN=CN+MN
根據(jù)兩點之間,線段最短,當點N在線段CM上時,BN+MN最短.
即點N位于CM與AD的交點時,BN+MN最短.
②當點N在CM上時,BN+MN最短,即BN+MN最小值為CM的長度
∵點M是AB的中點
∴AM=BM=2
在Rt△ACM中,CM==2
∴BN+MN最小值為2
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在△ABC中,AB=AC=10cm,BC=8cm,D為AB中點,設點P在線段BC上以3cm/秒的速度由B點向C點運動,點Q在線段CA上由C點向A點運動.
(1)若Q點運動的速度與P點相同,且點P,Q同時出發(fā),經(jīng)過1秒鐘后△BPD與△CQP是否全等,并說明理由;
(2)若點P,Q同時出發(fā),但運動的速度不相同,當Q點的運動速度為多少時,能在運動過程中有△BPD與△CQP全等?
(3)若點Q以(2)中的速度從點C出發(fā),點P以原來的速度從點B同時出發(fā),都是逆時針沿△ABC的三邊上運動,經(jīng)過多少時間點P與點Q第一次在△ABC的哪條邊上相遇?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校利用二維碼進行學生學號統(tǒng)一編排.黑色小正方形表示1,白色小正方形表示0,將每一行數(shù)字從左到右依次記為a,b,c,d,那么利用公式計算出每一行的數(shù)據(jù).第一行表示年級,第二行表示班級,第三行表示班級學號的十位數(shù),第四行表示班級學號的個位數(shù).如圖1所示,第一行數(shù)字從左往右依次是1,0,0,1,則表示的數(shù)據(jù)為1×23+0×22+0×21+1=9,計作09,第二行數(shù)字從左往右依次是1,0,1,0,則表示的數(shù)據(jù)為1×23+0×22+1×21=10,計作10,以此類推,圖1代表的統(tǒng)一學號為091034,表示9年級10班34號.小明所對應的二維碼如圖2所示,則他的統(tǒng)一學號為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,E為AB上一點,且ED平分∠ADC,EC平分∠BCD,則下列結(jié)論中錯誤的是( )
A. AE=BE B. DE⊥CE C. CD=AD+BC D. CD=AD+CE
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩個直角和有公共頂點.下列結(jié)論:①;②;③若平分,則平分;④的平分線與的平分線是同一條射線.其中結(jié)論正確的個數(shù)是( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人從地前往地,甲的速度是每小時80千米,乙的速度是甲的速度的1.5倍,甲比乙早出發(fā)0.5小時,結(jié)果甲比乙晚到1.5小時.
(1)求,兩地的路程是多少千米?
(2)當甲到達地后,乙再與甲同時從地按各自的原速返回地,若他們由地返回地的過程中所行走路程的和為180千米,則甲走了多少小時?
(3)若乙到達地后立即按原速返回,問再經(jīng)過多長時間甲與乙之間的距離為20千米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將△ABO繞點A順時針旋轉(zhuǎn)到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉(zhuǎn)到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉(zhuǎn)到△A2B2C2的位置,點A2在x軸上,依次進行下去….若點A(,0),B(0,2),則點B2018的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩個工程隊計劃修建一條長15千米的鄉(xiāng)村公路,已知甲工程隊每天比乙工程隊每天多修路0.5千米,乙工程隊單獨完成修路任務所需天數(shù)是甲工程隊單獨完成修路任務所需天數(shù)的1.5倍.
(1)求甲、乙兩個工程隊每天各修路多少千米?
(2)若甲工程隊每天的修路費用為0.5萬元,乙工程隊每天的修路費用為0.4萬元,要使兩個工程隊修路總費用不超過5.2萬元,甲工程隊至少修路多少天?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com