【題目】已知關(guān)于x的一元二次方程x2(2m1)xm2 10.

(1)若方程有實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍;

(2)若方程兩實(shí)數(shù)根分別為x1,x2,且滿足,求實(shí)數(shù)m的值.

【答案】1m;(2m=2.

【解析】

1)令≥0即可求出m的取值范圍;
2)將x12+x22=15轉(zhuǎn)化為(x1+x22-2x1x2=15,再代入計(jì)算即可解答.

解:(1)由題意有=2m+12-4m2+1≥0,
解得m≥
即實(shí)數(shù)m的取值范圍是m≥
2)由x12+x22=15得(x1+x22-2x1x2=15,
x1+x2=-2m+1),x1x2=m2+1,
[-2m+1]2-2m2+1=15,
m2+2m-8=0
解得m=-4m=2
m≥,
m=2
故實(shí)數(shù)m的值為2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為了提升菜籃子工程質(zhì)量,計(jì)劃用大、中型車輛共輛調(diào)撥不超過噸蔬菜和噸肉制品補(bǔ)充當(dāng)?shù)厥袌觯阎惠v大型車可運(yùn)蔬菜噸和肉制品噸;一輛中型車可運(yùn)蔬菜噸和肉制品噸.

1)符合題意的運(yùn)輸方案有幾種?請你幫助設(shè)計(jì)出來;

2)若一輛大型車的運(yùn)費(fèi)是元,一輛中型車的運(yùn)費(fèi)為元,試說明中哪種運(yùn)輸方案費(fèi)用最低?最低費(fèi)用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四邊形為正方形,上一點(diǎn),將正方形折疊,使點(diǎn)與點(diǎn)重合,折痕為,相交于點(diǎn),若.求:

(1)的面積;

(2)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A在反比例函數(shù)y x0)的圖象上,過點(diǎn)AACx軸,垂足是C,一次函數(shù)y kxb的圖象經(jīng)過點(diǎn)A,與y軸的正半軸交于點(diǎn)BAC OC 2OB.

1)求點(diǎn)A的坐標(biāo);

2)求一次函數(shù)的表達(dá)式,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為2cm的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,若兩個(gè)三角形重疊部分的面積為1cm2,則它移動(dòng)的距離AA′等于( )

A. 0.5cm B. 1cm C. 1.5cm D. 2cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,關(guān)于的方程

1)不解方程,判斷此方程根的情況;

2)若是該方程的一個(gè)根,求的值和另一根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為豐富學(xué)生的文體生活,育紅學(xué)校準(zhǔn)備成立聲樂、演講、舞蹈、足球、籃球五個(gè)社團(tuán),要求每個(gè)學(xué)生都參加一個(gè)社團(tuán)且每人只能參加一個(gè)社團(tuán).為了了解即將參加每個(gè)社團(tuán)的大致人數(shù),學(xué)校對部分學(xué)生進(jìn)行了抽樣調(diào)查在整理調(diào)查數(shù)據(jù)的過程中,繪制出如圖所示的兩幅不完整的統(tǒng)計(jì)圖,請你根據(jù)圖中信息解答下列問題:

(1)被抽查的學(xué)生一共有多少人?

(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整.

(3)若全校有學(xué)生1500人,請你估計(jì)全校有意參加聲樂社團(tuán)的學(xué)生人數(shù).

(4)從被抽查的學(xué)生中隨意選出1人,該學(xué)生恰好選擇參加演講社團(tuán)的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格上有ABCDEF

1)這兩個(gè)三角形相似嗎?為什么?

2)請直接寫出∠A的度數(shù)   

3)在上邊的網(wǎng)格內(nèi)再畫一個(gè)三角形,使它與ABC相似,并求出其相似比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線的函數(shù)表達(dá)式為,它與軸、軸的交點(diǎn)分別為A、B兩點(diǎn).

(1)求點(diǎn)A、B的坐標(biāo);

(2)設(shè)F是軸上一動(dòng)點(diǎn),⊙P經(jīng)過點(diǎn)B且與軸相切于點(diǎn)F,設(shè)⊙P的圓心坐標(biāo)為P(x,y),求y與之間的函數(shù)關(guān)系;

(3)是否存在這樣的⊙P,既與軸相切,又與直線相切于點(diǎn)B?若存在,求出圓心P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案