【題目】下列說法正確的是( )
A. 一個游戲中獎的概率是,則做100次這樣的游戲一定會中獎
B. 為了了解全國中學生的心理健康狀況,應(yīng)采用普查的方式
C. 一組數(shù)據(jù)0,1,2,1,1的眾數(shù)和中位數(shù)都是1
D. 若甲組數(shù)據(jù)的方差為,乙組數(shù)據(jù)的方差為,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定
【答案】C
【解析】
根據(jù)調(diào)查方式,可判斷A,根據(jù)概率的意義一,可判斷B根據(jù)中位數(shù)、眾數(shù),可判斷c,根據(jù)方差的性質(zhì),可判斷D.
A、 一個游戲中獎的概率是 ,做100次這樣的游戲有可能中獎,而不是一定中獎,故A錯誤;
B、為了了解全國中學生的心理健康狀況,應(yīng)采用抽查方式,故B錯誤;
C、一組數(shù)據(jù)0,1,2,1,1的眾數(shù)和中位數(shù)都是1,故C正確;
D. 若甲組數(shù)據(jù)的方差為,乙組數(shù)據(jù)的方差為,無法比較甲乙兩組的方差,故無法確定那組數(shù)據(jù)更加穩(wěn)定,故D錯誤.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】某年級380名師生秋游,計劃租用7輛客車,現(xiàn)有甲、乙兩種型號客車,它們的載客量和租金如表.
甲種客車 | 乙種客車 | |
載客量(座/輛) | 60 | 45 |
租金(元/輛) | 550 | 450 |
(1)設(shè)租用甲種客車x輛,租車總費用為y元.求出y(元)與x(輛)之間的函數(shù)表達式;
(2)當甲種客車有多少輛時,能保障所有的師生能參加秋游且租車費用最少,最少費用是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,一次函數(shù)y=﹣2x+8的圖象與x軸,y軸分別交于點A,點C,過點A作AB⊥x軸,垂足為點A,過點C作CB⊥y軸,垂足為點C,兩條垂線相交于點B.
(1)線段AB,BC,AC的長分別為AB= ,BC= ,AC= ;
(2)折疊圖1中的△ABC,使點A與點C重合,再將折疊后的圖形展開,折痕DE交AB于點D,交AC于點E,連接CD,如圖2.
請從下列A、B兩題中任選一題作答,我選擇 題.
A:①求線段AD的長;
②在y軸上,是否存在點P,使得△APD為等腰三角形?若存在,請直接寫出符合條件的所有點P的坐標;若不存在,請說明理由.
B:①求線段DE的長;
②在坐標平面內(nèi),是否存在點P(除點B外),使得以點A,P,C為頂點的三角形與△ABC全等?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習俗,某食品廠為了解市民對去年銷售量較好的肉餡粽、豆沙粽、紅棗粽、蛋黃餡粽(以下分別用A,B,C,D表示這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進行了抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅統(tǒng)計圖.
請根據(jù)以上信息回答:
(1)本次參加抽樣調(diào)查的居民有多少人?將不完整的條形圖和扇形圖補充完整;
(2)若居民區(qū)有8000人,請估計愛吃C ,D粽的總?cè)藬?shù);
(3)若有外型完全相同的A,B,C,D粽各一個煮熟后,小王吃了兩個,用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司經(jīng)營楊梅業(yè)務(wù),以3萬元/噸的價格買入楊梅后,分揀成A、B兩類,A類楊梅包裝后直接銷售,包裝成本為1萬元/噸,它的平均銷售價格y(單位:萬元/噸)與銷售數(shù)量x(≥2,單位:噸)之間的函數(shù)關(guān)系如圖所示;B類楊梅深加工后再銷售,深加工總費用s(單位:萬元)與加工數(shù)量t(單位:噸)之間的函數(shù)關(guān)系是,平均銷售價格為9萬元/噸.
(1)A類楊梅的銷售量為5噸時,它的平均銷售價格是每噸多少萬元?
(2)若該公司收購10噸楊梅,其中A類楊梅有4噸,則經(jīng)營這批楊梅所獲得的毛利潤(w)為多少萬元?(毛利潤=銷售總收入-經(jīng)營總成本)
(3)若該公司收購20噸楊梅,其中A類楊梅有x噸,經(jīng)營這批楊梅所獲得的毛利潤為w萬元.
①求w關(guān)于x的函數(shù)關(guān)系式;
②若該公司獲得了30萬元毛利潤,問:用于直銷的A類楊梅有多少噸?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A、B分別在x軸、y軸上(OA>OB),以AB為直徑的圓經(jīng)過原點O,C是的中點,連結(jié)AC,BC.下列結(jié)論:①AC=BC;②若OA=4,OB=2,則△ABC的面積等于5;③若OA﹣OB=4,則點C的坐標是(2,﹣2).其中正確的結(jié)論有( )
A. 3個 B. 2個 C. 1個 D. 0個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知直線與x、y軸交于B、C兩點,A(0,0),在△ABC內(nèi)依次作等邊三角形,使一邊在x軸上,另一個頂點在BC邊上,作出的等邊三角形分別是第1個△AA1B1,第2個△B1A2B2,第3個△B2A3B3,…則第n個等邊三角形的邊長等于( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】.計算:
(1)23﹣17﹣(﹣7)+(﹣16)
(2)
(3) -1.2×4÷(-)+÷(--2an =1) ×(-)
(4)﹣14﹣8÷(﹣2)3+22×(﹣3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC的中點,BE=2DE,延長DE到點F,使得EF=BE,連接CF.
(1)求證:四邊形BCFE是菱形;
(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com