精英家教網 > 初中數學 > 題目詳情

【題目】問題發(fā)現

小明在學習魯教版八年級上冊97頁例4,受到啟發(fā)進行如下數學實驗操作:

如圖1,取一個銳角為45°的三角尺,把銳角頂點放在正方形ABCD的頂點D處,將三角尺繞點D旋轉一個角度,使三角尺的直角邊與斜邊分別交邊AB,BC于點E和點F,連接FE,在繞點D旋轉過程中,發(fā)現線段AE,EF,CF滿足EF=AE+CF的數量關系,但是不會進行證明,數學張老師給他如下的提示:ADE繞點D逆時針旋轉90°DCE’的位置,小明畫旋轉后的圖形,利用全等的知識證明了出來.你根據上面的提示畫出旋轉后的圖形,并將上面的結論進行證明.

問題探究

小明的探究引發(fā)了老師的興趣,老師將三角尺繞點D旋轉到如圖2的位置,三角尺的直角邊與斜邊分別交邊AB,BC的延長線于點E和點F,老師問題小明此時AE,EF,CF滿足什么數量關系,小明思考后說出了正確的結論.請同學們直接寫出正確結論(不用寫出證明過程).

拓展延伸

張老師讓小明利用上面探究積累的學習經驗,解答下面的問題:

如圖3已知正方形ABCD,E在邊AB,F在邊BC,且∠EDF=45°,CD=6,AE=2,CF的長.

【答案】問題發(fā)現:證明見解析;問題探究:AE=CF+EF;拓展延伸:CF的長為:3

【解析】

問題發(fā)現

把△ADE繞點逆時針旋轉90°的位置,可得,由題意可證,可得. 則可得EF=AE+CF;

問題探究

AB上截取AM=CF,由題意可證△ADM≌△CDF,可得DM=DF,ADM=CDF,即可得∠EDF=MDE=45°,則可證△MDE≌△FDE,可得EF=EM,則可得AE=EF+CF

拓展延伸

RtBEF中, 根據勾股定理可求CF的長.

解:問題發(fā)現:

把△ADE繞點D逆時針旋轉90° 的位置

在正方形ABCD

∵∠EDF=45°

∴∠1+2=45°

∴∠3+2=45°

問題探究:

如圖2:AB上截取AM=CF,


∵∠A=DCF=90°,AM=CF,AD=CD
∴△ADM≌△CDF
DM=DF,ADM=FDC,

∵∠ADM+MDC=90°
∴∠CDF+MDC=90°,即∠MDF=90°
∵∠EDF=45°
∴∠EDF=MDE=45°,且MD=DF, DE=DE
∴△MDE≌△FDE

EF=ME
AE=AM+ME
AE=CF+EF

拓展延伸:

在正方形ABCDAB=BC=CD=6, EBF=90°

AE=2
BE=4

CF=x,則BC=6-x,由(1)可知EF=AE+CF=2+x

RtEBF中:

x=3

CF的長為:3

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線交AB于M,交AC于N.

(1)若∠ABC=70°,求∠MNA的度數.

(2)連接NB,若AB=8cm,△NBC的周長是14cm.求BC的長;

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點I為△ABC的內心,AB=4AC=3,BC=2,將∠ACB平移使其頂點與I重合,則圖中陰影部分的周長為___________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在等腰三角形ABC中,∠A90°,DBC邊的中點.

(1)E在直角邊AB上運動,F在直角邊AC上運動,在運動過程中始終保持BEAF.則△EDF_____是三角形.

(2)(1)的條件下,四邊形AEDF的面積是否發(fā)生變化?若不變化,請直接寫出當AB4時,四邊形AEDF的面積;若變化,請說明理由.

(3)EF分別為AB,CA延長線上的點,且BEAF,其他條件不變,那么(1)中的結論是否還成立?畫圖并證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了保護視力,某學校開展了全校性的視力保健活動,活動前,隨機抽取部分學生,檢查他們的視力,結果如圖所示,(數據包括左端點不包括右端點,精確到0.1);活動后,再次檢查這部分學生的視力,結果如表格所示.

抽取的學生活動后視力頻數分布表

分組

頻數

4.0≤x<4.2

2

4.2≤x<4.4

4

4.4≤x<4.6

6

4.6≤x<4.8

10

4.8≤x<5.0

21

5.0≤x<5.2

7

(1)此次調查所抽取的樣本容量為   ;

(2)若視力達到4.8以上(含4.8)為達標,請估計活動前該校學生的視力達標率;

(3)請選擇適當的統(tǒng)計量,從兩個不同的角度分析活動前后相關數據,并評價視力保健活動的效果.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABC的頂點A在第一象限,點B,C的坐標分別為(2,1),(6,1),BAC=90°,AB=AC,直線ABy軸于點P,若ABCABC關于點P成中心對稱,則點A的坐標為( 。

A. (﹣4,﹣5) B. (﹣5,﹣4) C. (﹣3,﹣4) D. (﹣4,﹣3)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點P是菱形ABCD邊上的一動點,它從點A出發(fā)沿在A→B→C→D路徑勻速運動到點D,設PAD的面積為y,P點的運動時間為x,則y關于x的函數圖象大致為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為10cm,點E在邊AB上,且AE=4cm,

(1)如果點P在線段BC上以2cm/s的速度由B點向C點運動,同時,點Q在線段CD上由C點向D點運動.

若點Q的運動速度與點P的運動速度相等,經過2秒后,BPE與CQP是否全等?請說明理由.

若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為________cm/s時,在某一時刻也能夠使BPE與CQP全等.

(2)若點Q以中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿正方形ABCD的四條邊運動.求經過多少秒后,點P與點Q第一次相遇,并寫出第一次相遇點在何處?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】兩個一次函數l1、l2的圖象如圖:

(1)分別求出l1l2兩條直線的函數關系式;

(2)求出兩直線與y軸圍成的ABP的面積;

(3)觀察圖象:請直接寫出當x滿足什么條件時,l1的圖象在l2的下方.

查看答案和解析>>

同步練習冊答案