如圖,以M(-5,0)為圓心、4為半徑的圓與x軸交于A、B兩點(diǎn),P是⊙M上異于A、B的一動(dòng)點(diǎn),直線PA、PB分別交y軸于C、D,以CD為直徑的⊙N與x軸交于E、F,則EF的長(zhǎng)(  )
A.等于4
2
B.等于4
3
C.等于6
D.隨P點(diǎn)位置的變化而變化

連接NE,
設(shè)圓N半徑為r,ON=x,則OD=r-x,OC=r+x,
∵以M(-5,0)為圓心、4為半徑的圓與x軸交于A、B兩點(diǎn),
∴OA=4+5=9,0B=5-4=1,
∵AB是⊙M的直徑,
∴∠APB=90°(直徑所對(duì)的圓周角是直角),
∵∠BOD=90°,
∴∠PAB+∠PBA=90°,∠ODB+∠OBD=90°,
∵∠PBA=∠OBD,
∴∠PAB=∠ODB,
∵∠APB=∠BOD=90°,
∴△OBD△OCA,
OC
OB
=
OA
OD
,
r+x
1
=
9
r-x
,
(r+x)(r-x)=9,
r2-x2=9,
由垂徑定理得:OE=OF,OE2=EN2-ON2=r2-x2=9,
即OE=OF=3,
∴EF=2OE=6,
故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在以O(shè)為圓心的兩個(gè)同心圓中,小圓的半徑長(zhǎng)為4,大圓的弦AB與小圓交于點(diǎn)C、D,且AC=CD,∠COD=60°
(1)求大圓半徑的長(zhǎng);
(2)若大圓的弦AE長(zhǎng)為8
2
,請(qǐng)判斷弦AE與小圓的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知⊙O的半徑r=2cm,弦AB=2
3
cm,則AB的弦心距是______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,點(diǎn)A,B是⊙O上兩點(diǎn),AB=10,點(diǎn)P是⊙O上的動(dòng)點(diǎn)(P與A,B不重合),連接AP,PB,過(guò)點(diǎn)O分別作OE⊥AP于E,OF⊥PB于F,則EF=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的長(zhǎng)為( 。
A.1cmB.2cmC.3cmD.4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,AB為⊙O的直徑,C、D是半圓弧上的兩點(diǎn),E是AB上除O外的一點(diǎn),AC與DE相交于F.①
AD
=
CD
,②DE⊥AB,③AF=DF.
(1)寫出“以①②③中的任意兩個(gè)為條件,推出第三個(gè)(結(jié)論)”的一個(gè)正確命題,并加以證明;
(2)“以①②③中的任意兩個(gè)為條件,推出笫三個(gè)(結(jié)論)”可以組成多少個(gè)正確的命題?(不必說(shuō)明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

△ABC內(nèi)接于⊙O,且AB=AC,⊙O的半徑等于6cm,O點(diǎn)到BC的距離OE等于3cm,則AC的長(zhǎng)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖:AB是⊙O的直徑,BC是弦,D是弧BC的中點(diǎn),OD交BC于點(diǎn)E,且BC=8,ED=2.
①求⊙O的半徑;
②求點(diǎn)C到AB的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,P是⊙O內(nèi)一定點(diǎn),請(qǐng)你在⊙O內(nèi)作出過(guò)P點(diǎn)的最長(zhǎng)弦和最短弦,標(biāo)上字母,并指出最長(zhǎng)弦是______,最短弦是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案