【題目】如圖,在公路 MN 兩側分別有 A, A......A,七個工廠,各工廠與公路 MN(圖中粗線)之間有小公路連接.現(xiàn)在需要在公路 MN 上設置一個車站,選擇站址的標準是使各工廠到車站的距離之和越小越好”.則下面結論中正確的是( .

①車站的位置設在 C 點好于 B ;

②車站的位置設在 B 點與 C 點之問公路上任何一點效果一樣;

③車站位置的設置與各段小公路的長度無關.

A.B.C.①③D.②③

【答案】C

【解析】

設出7條小公路的長度,然后分別表示出以B、C為車站時的距離之和,最后進行比較即可.

如圖,設A1,A2,,A7,七個工廠與公路MN連接的小公路的長度分別為a1,a2,,a7DE=u1,CD=u2,BC=u3,AB=u4,則

當以C為車站時:

距離和= a1+u1+u2+a2+u2+a3+a4+a5+u3+a6+u3+a7+u3+u4

= a1+a2+a3+a4+a5+a6+a7+u1+2u2+3u3+u4,

當以B為車站時:

距離和= a1+u1+u2+u3+a2+u2+u3+a3+u3+a4+u3+a5+a6+a7+u4

= a1+a2+a3+a4+a5+a6+a7+u1+2u2 +4u3 +u4

通過比較可知,車站的位置設在C點好于B點,且與各段小公路的長度無關.

故選:C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點F在邊BC上,且AF=AD,過點D作DE⊥AF,垂足為點E

(1)求證:DE=AB;

(2)以A為圓心,AB長為半徑作圓弧交AF于點G,若BF=FC=1,求扇形ABG的面積.(結果保留π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線l平行x軸,交y軸于點A,第一象限內(nèi)的點B在l上,連結OB,動點P滿足∠APQ=90°,PQ交x軸于點C.

(1)當動點P與點B重合時,若點B的坐標是(2,1),求PA的長.

(2)當動點P在線段OB的延長線上時,若點A的縱坐標與點B的橫坐標相等,求PA:PC的值.

(3)當動點P在直線OB上時,點D是直線OB與直線CA的交點,點E是直線CP與y軸的交點,若∠ACE=∠AEC,PD=2OD,求PA:PC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有理數(shù)a,b,c在數(shù)軸上的位置如圖所示,且|a|=|c|.

(1)若|a+c|+|b|=2,求b的值;

(2)用“>”從大到小把a,b,﹣b,c連接起來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,A、B為x軸上兩點,C、D為y軸上的兩點,經(jīng)過點A、C、B的拋物線的一部分c1與經(jīng)過點A、D、B的拋物線的一部分c2組合成一條封閉曲線,我們把這條封閉曲線成為“蛋線”.已知點C的坐標為(0,﹣ ),點M是拋物線C2:y=mx2﹣2mx﹣3m(m<0)的頂點.

(1)求A、B兩點的坐標;

(2)“蛋線”在第四象限上是否存在一點P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由;

(3)當△BDM為直角三角形時,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面為某年11月的日歷:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

(1)在日歷上任意圈出一個豎列上相鄰的3個數(shù);

設中間的一個數(shù)為,則另外的兩個數(shù)為 、 ;

若已知這三個數(shù)的和為42,則這三天都在星期 ;

(2)在日歷上用一個小正方形任意圈出其中的9個數(shù),設圈出的9個數(shù)的中心的數(shù)為b,若這9個數(shù)的和為153,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為24cm的等邊三角形ABC中,點P從點A開始沿AB邊向點B以每秒鐘2cm的速度移動,點Q從點B開始沿BC邊向點C以每秒鐘4cm的速度移動.若P、Q分別從AB同時出發(fā),其中任意一點到達目的地后,兩點同時停止運動,求:

1)經(jīng)過6秒后,BP=    cm,BQ=    cm

2)經(jīng)過幾秒△BPQ的面積等于?

3)經(jīng)過幾秒后,△BPQ是直角三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為6,點E,F分別在AB,AD上,若CE3,且∠ECF45°,則CF的長為

A. 2 B. 3 C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某景區(qū)的水上樂園有一批人座的自劃船,每艘可供位游客乘坐游湖,因景區(qū)加大宣傳,預計今年游客將會增加.水上樂園的工作人員在去年日一天出租的艘次人自劃船中隨機抽取了艘,對其中抽取的每艘船的乘坐人數(shù)進行統(tǒng)計,并制成如下統(tǒng)計圖.

1)求扇形統(tǒng)計圖中, “乘坐1人”所對應的圓心角度數(shù);

2)估計去年日這天出租的艘次人自劃船平均每艘船的乘坐人數(shù);

3)據(jù)旅游局預報今年日這天該景區(qū)可能將增加游客300人,請你為景區(qū)預計這天需安排多少艘4人座的自劃船才能滿足需求.

查看答案和解析>>

同步練習冊答案