【題目】超速行駛是一種十分危險的違法駕駛行為,在一條東西走向的筆直高速公路MN上,小型車限速為每小時100千米. 現(xiàn)有一輛小汽車行駛到A處時,發(fā)現(xiàn)北偏東30°方向200米處有一超速監(jiān)測儀P. 10秒后,小汽車行駛至B處,測得監(jiān)測儀P在B處的北偏西45°方向上. 請問:這輛車超速了嗎?通過計算說明理由.(參考數(shù)據(jù):)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在Rt△ABO中,∠B=90°,∠OAB=30°,OA=3.以點O為原點,斜邊OA所在直線為x軸,建立平面直角坐標系,以點P(4,0)為圓心,PA長為半徑畫圓,⊙P與x軸的另一交點為N,點M在⊙P上,且滿足∠MPN=60°.⊙P以每秒1個單位長度的速度沿x軸向左運動,設(shè)運動時間為ts,解答下列問題:
(發(fā)現(xiàn))(1)的長度為多少;
(2)當t=2s時,求扇形MPN(陰影部分)與Rt△ABO重疊部分的面積.
(探究)當⊙P和△ABO的邊所在的直線相切時,求點P的坐標.
(拓展)當與Rt△ABO的邊有兩個交點時,請你直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了實現(xiàn)省城合肥跨越發(fā)展,近兩年我市開始全面實施“暢通一環(huán)”工程,如圖為一環(huán)路的一座下穿路拱橋,它輪廓是拋物線,橋的跨度AB=16米,拱高為6米.
(1)請以A點為坐標原點,AB所在直線為x軸建立平面直角坐標系,將拋物線放在直角坐標系中,求出拋物線的解析式;
(2)若橋拱下是雙向行車道,其中一條行車道能否并排行駛寬3米,高2米的兩輛汽車(汽車間隔不小于1米)說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B兩地之間為直線距離且相距600千米,甲開車從A地出發(fā)前往B地,乙騎自行車從B地出發(fā)前往A地,已知乙比甲晚出發(fā)1小時,兩車均勻速行駛,當甲到達B地后立即原路原速返回,在返回途中再次與乙相遇后兩車都停止,如圖是甲、乙兩人之間的距離s(千類)與甲出發(fā)的時間t(小時)之間的圖象,則當甲第二次與乙相遇時,乙離B地的距離為_____千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A(﹣1,0),B(3,0)兩點,與y軸交于點C(0,﹣2),頂點為D,對稱軸交x軸于點E.
(1)求該二次函數(shù)的解析式;
(2)設(shè)M為該拋物線對稱軸左側(cè)上的一點,過點M作直線MN∥x軸,交該拋物線于另一點N.是否存在點M,使四邊形DMEN是菱形?若存在,請求出點M的坐標;若不存在,請說明理由;
(3)連接CE(如圖2),設(shè)點P是位于對稱軸右側(cè)該拋物線上一點,過點P作PQ⊥x軸,垂足為Q.連接PE,請求出當△PQE與△COE相似時點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將兩個圓形紙片(半徑都為1)如圖重疊水平放置,向該區(qū)域隨機投擲骰子,則骰子落在重疊區(qū)域(陰影部分)的概率大約為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在創(chuàng)建“全國文明城市”和“省級文明城區(qū)”過程中,欒城區(qū)污水處理廠決定先購買A、B兩型污水處理設(shè)備共20臺,對城區(qū)周邊污水進行處理.已知每臺A型設(shè)備價格為12萬元,每臺B型設(shè)備價格為10萬元;1臺A型設(shè)備和2臺B型設(shè)備每周可以處理污水640噸,2臺A型設(shè)備和3臺B型設(shè)備每周可以處理污水1080噸.
(1)求A、B兩型污水處理設(shè)備每周分別可以處理污水多少噸?
(2)要想使污水處理廠購買設(shè)備的資金不超過230萬元,但每周處理污水的量又不低于4500噸,請你列舉出所有購買方案,并指出哪種方案所需資金最少?最少是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一塊形狀如圖所示的玻璃,不小心把DEF部分打碎,現(xiàn)在只測得AB=60cm,BC=80cm,∠A=120°,∠B=60°,∠C=150°,你能設(shè)計一個方案,根據(jù)測得的數(shù)據(jù)求出AD的長嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊△ABC,AB=16,以AB為直徑的半圓與BC邊交于點D,過點D作DF⊥AC,垂足為F,過點F作FG⊥AB,垂足為G,連結(jié)GD.
(1)求證:DF是⊙O的切線;
(2)求FG的長;
(3)求tan∠FGD的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com