已知:關(guān)于x的方程2x2+3x-m+1=0的兩個(gè)實(shí)數(shù)根的倒數(shù)和為3,求m的值.
分析:根據(jù)一元二次方程根與系數(shù)的關(guān)系可以得到:x1+x2=-
3
2
,x1x2=
1-m
2
.根據(jù)
1
x1
+
1
x2
=
x1+x2
x1x2
,代入即可得到關(guān)于m的方程,從而求解.
解答:解:設(shè)x1,x2是方程的兩個(gè)實(shí)數(shù)根,
x1+x2=-
3
2
,x1x2=
1-m
2

又∵
1
x1
+
1
x2
=3

x1+x2
x1x2
=3
,
-3
1-m
=3
,
∴-3=3-3m,
∴m=2,
又∵當(dāng)m=2時(shí),原方程的△=17>0,
∴m的值為2.
點(diǎn)評:本題考查了一元二次方程根與系數(shù)的關(guān)系及根的判別式,將根與系數(shù)的關(guān)系與代數(shù)式變形相結(jié)合解題是一種經(jīng)常使用的解題方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:關(guān)于x的方程mx2-3(m-1)x+2m-3=0.
(1)求證:m取任何實(shí)數(shù)量,方程總有實(shí)數(shù)根;
(2)若二次函數(shù)y1=mx2-3(m-1)x+2m-3的圖象關(guān)于y軸對稱;
①求二次函數(shù)y1的解析式;
②已知一次函數(shù)y2=2x-2,證明:在實(shí)數(shù)范圍內(nèi),對于x的同一個(gè)值,這兩個(gè)函數(shù)所對應(yīng)的函數(shù)值y1≥y2均成立;
(3)在(2)條件下,若二次函數(shù)y3=ax2+bx+c的圖象經(jīng)過點(diǎn)(-5,0),且在實(shí)數(shù)范圍內(nèi),對于x的同一個(gè)值,這三個(gè)函數(shù)所對應(yīng)的函數(shù)值y1≥y3≥y2均成立,求二次函數(shù)y3=ax2+bx+c的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、已知:關(guān)于x的方程x2+2x=3-4k有兩個(gè)不相等的實(shí)數(shù)根(其中k為實(shí)數(shù))
(1)則k的取值范圍是
k<1
;
(2)若k為非負(fù)整數(shù),則此時(shí)方程的根是
-3或1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

3、已知:關(guān)于x的方程x2-kx-2=0.
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)方程的兩根為x1,x2,如果2(x1+x2)>x1x2,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:關(guān)于x的方程ax2-(1-3a)x+2a-1=0,求證:a取任何實(shí)數(shù)時(shí),方程ax2-(1-3a)x+2a-1=0總有實(shí)數(shù)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:關(guān)于x的方程x2+kx-12=0,求證:方程有兩個(gè)不相等的實(shí)數(shù)根.

查看答案和解析>>

同步練習(xí)冊答案