【題目】如圖,矩形ABCD中,AD=10,AB=8,點E為邊DC上一動點,連接AE,把ADE沿AE折疊,使點D落在點D′處,當(dāng)DD′C是直角三角形時,DE的長為_____

【答案】45.

【解析】

∵△ADE沿AE折疊,使點D落在點D′處,

∴DE=D′E,AD=AD′=10,

(1)當(dāng)∠DD′C=90°時,如圖1,

∵DE=D′E,

∴∠1=∠2,

∵∠1+∠4=90°,∠2+∠3=90°,

∴∠3=∠4,

∴ED′=EC,

∴DE=EC=CD=4;

(2)當(dāng)∠DCD′=90°時,則點D′落在BC上,如圖2,

設(shè)DE=x,則ED′=x,CE=8﹣x,

∵AD′=AD=10,

Rt△ABD′中,BD′==6,

∴CD′=4,

Rt△CED′中,(8﹣x)2+42=x2,解得x=5,

DE的長為5,

綜上所述,當(dāng)△DD′C是直角三角形時,DE的長為45.

故答案為45.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,DM、EN分別垂直平分ACBC,交ABM、N兩點,DMEN相交于點F

1)若△CMN的周長為15cm,求AB的長;

2)若∠MFN=70°,求∠MCN的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點C落在斜邊AB上某一點D處,折痕為EF(點E、F分別在邊AC、BC上)

(1)若△CEF與△ABC相似,且當(dāng)AC=BC=2時,求AD的長;

(2)若△CEF與△ABC相似,且當(dāng)AC=3,BC=4時,求AD的長;

(2)當(dāng)點D是AB的中點時,△CEF與△ABC相似嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB為⊙O的直徑,BD和CD為⊙O的切線,切點分別為B和C.

(1)求證:AC∥OD;

(2)當(dāng)BC=BD,且BD=6cm時,求圖中陰影部分的面積(結(jié)果不取近似值).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點DAB邊的中點,過點D作邊AB的垂線l,El上任意一點,且AC=5BC=8,則△AEC的周長最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知長方形ABCD中,∠A=D=B=C=90,EAD上的一點,FAB上的一點,EFEC,且EFEC,DE=4cm.

(1)求證:AF=DE.

(2)AD+DC=18,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:通過小學(xué)的學(xué)習(xí)我們知道,分?jǐn)?shù)可分為真分?jǐn)?shù)假分?jǐn)?shù),而假分?jǐn)?shù)都可化為帶分?jǐn)?shù),如:我們定義:在分式中,對于只含有一個字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時,我們稱之為假分式;當(dāng)分子的次數(shù)小于分母的次數(shù)時,我們稱之為真分式

這樣的分式就是假分式;再如:這樣的分式就是真分式類似的,假分式也可以化為帶分式(即:整式與真分式的和的形式)

如:;

解決下列問題:

(1)分式______分式(真分式假分式”)

(2)將假分式化為帶分式;

(3)如果x為整數(shù),分式的值為整數(shù),求所有符合條件的x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC底邊BC的長為4,面積為12,腰AB的垂直平分線EFAB于點E,交AC于點F.DBC邊的中點,M為線段EF上一個動點,則BDM的周長的最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知點A(1,a是反比例函數(shù)的圖象上一點,直線與反比例函數(shù)的圖象的交點為點B、DB(3,﹣1),

(1)求反比例函數(shù)的解析式

(2)求點D坐標(biāo),并直接寫出y1y2x的取值范圍;

(3)動點Px,0)x軸的正半軸上運動,當(dāng)線段PA與線段PB之差達(dá)到最大時,求點P的坐標(biāo)

查看答案和解析>>

同步練習(xí)冊答案