【題目】如圖,正△ABC的邊長為2,過點B的直線l⊥AB,且△ABC與△A′BC′關(guān)于直線l對稱,D為線段BC′上一動點,則AD+CD的最小值是( )
A. 4 B. 3 C. 2 D. 2+
【答案】A
【解析】連接CC′,連接A′C交y軸于點D,連接AD,此時AD+CD的值最小,根據(jù)等邊三角形的性質(zhì)即可得出四邊形CBA′C′為菱形,根據(jù)菱形的性質(zhì)即可求出A′C的長度,從而得出結(jié)論.
解:連接CC′,連接A′C交l于點D,連接AD,此時AD+CD的值最小,如圖所示.
∵△ABC與△A′BC′為正三角形,
∴∠ABC=∠A/=60°,A/B/=BC=A/C/,
∴A/C/∥BC,
∴四邊形A/BCC/為菱形,
∴點C關(guān)于BC/對稱的點是A/,
∴當點D與點B重合時,AD+CD取最小值,
此時AD+CD=2+2=4.
故選A.
“點睛”本題考查了軸對稱中的最短線路問題以及等邊三角形的性質(zhì),找出點C關(guān)于BC/對稱的點是A/是解題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:
【題目】在學習了正方形后,數(shù)學小組的同學對正方形進行了探究,發(fā)現(xiàn):
(1)如圖1,在正方形ABCD中,點E為BC邊上任意一點(點E不與B、C重合),點F在線段AE上,過點F的直線MN⊥AE,分別交AB、CD于點M、N . 此時,有結(jié)論AE=MN,請進行證明;
(2)如圖2:當點F為AE中點時,其他條件不變,連接正方形的對角線BD, MN 與BD交于點G,連接BF,此時有結(jié)論:BF= FG,請利用圖2做出證明.
(3)如圖3:當點E為直線BC上的動點時,如果(2)中的其他條件不變,直線MN分別交直線AB、CD于點M、N,請你直接寫出線段AE與MN之間的數(shù)量關(guān)系、線段BF與FG之間的數(shù)量關(guān)系.
圖1 圖2 圖3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一個長為、寬為的長方形,沿中虛線用剪刀平均分成四塊小長方形,然后用四塊小長方形拼成的一個“回形”正方形(如圖).
(1)如圖中的陰影部分面積為: ;(用、的代數(shù)式表示)
(2)觀察如圖,請你寫出、、之間的等量關(guān)系是 ;
(3)根據(jù)(2)中的結(jié)論,若,,則 ;
(4)實際上通過計算圖形的陰影可以探求相應的等式,如圖,請你寫出這個等式 ;
(5)如圖,線段 (其中為正數(shù)),點線在段上,在線段同側(cè)作正方形及正方形,連接,,得到.當時,的面積記為;當時,的面積記為;當時,的面積記為;當時,的面積記為,則 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠為了擴大生產(chǎn),決定購買6臺機器用于生產(chǎn)零件,現(xiàn)有甲、乙兩種機器可供選擇.其中甲型機器每日生產(chǎn)零件106個,乙型機器每日生產(chǎn)零件60個,經(jīng)調(diào)査,購買3臺甲型機器和2臺乙型機器共需要31萬元,購買一臺甲型機器比購買一臺乙型機器多2萬元.
(1)求甲、乙兩種機器每臺各多少萬元?
(2)如果工廠購買機器的預算資金不超過34萬元,那么你認為該工廠有哪幾種購買方案?
(3)在(2)的條件下,如果要求該工廠購進的6臺機器的日產(chǎn)量能力不能低于400個,那么為了節(jié)約資金.應該選擇哪種方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,點A,B,C均在格點上.
(1)請值接寫出點A,B,C的坐標.
(2)若平移線段AB,使B移動到C的位置,請在圖中畫出A移動后的位置D,依次連接B,C,D,A,并求出四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則在①a<0,②b>0,③c<0,④b2﹣4ac>0中錯誤的個數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,路燈距地面8米,身高1.6米的小明從距離燈底(點O)20米的點A處,沿AO所在直線行走12米到達點B時,小明身影長度( )
A.變長2.5米
B.變短2米
C.變短2.5米
D.變短3米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】經(jīng)過平移,△ABC移到△DEF的位置,如圖,下列結(jié)論:①AD=BE=CF,且AD∥BE∥CF;②AB∥DE,BC∥EF,BC=EF;③AB=DE,BC=EF,AC=DF.正確的有( )
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】函數(shù) yl= x ( x ≥0 ) , ( x > 0 )的圖象如圖所示,則結(jié)論: ① 兩函數(shù)圖象的交點A的坐標為(3 ,3 ) ② 當 x > 3 時, ③ 當 x =1時, BC = 8
④ 當 x 逐漸增大時, yl 隨著 x 的增大而增大,y2隨著 x 的增大而減小.其中正確結(jié)論的序號是_ .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com