【題目】已知:如圖,在ABC中,點(diǎn)D在邊AB上,點(diǎn)E在線段CD上,且∠ACD=B=BAE.

1)求證:;

2)當(dāng)點(diǎn)ECD中點(diǎn)時(shí),求證:.

【答案】(1)證明見解析,(2)證明見解析..

【解析】

(1)欲證明,只要證明AED∽△BAC即可解決問題;

(2)由DAE∽△DCA,推出,由DE=EC,可得,推出,再證明AD2=ADAB即可解決問題;

(1)∵∠ACD=B=BAE,BAC=BAE+CAE,AED=ACD+CAE,

∴∠AED=BAC,

∵∠DAE=B,

∴△AED∽△BAC,

(2)∵∠ADE=CDA,DAE=ACD,

∴△DAE∽△DCA,

,

DE=EC,

,

∵∠DAC=BAC,ACD=B,

∴△ACD∽△ABC,

AC2=ADAB,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下表:

則一元二次方程x2-2x-2=0在精確到0.1時(shí)一個(gè)近似根是______,利用拋物線的對(duì)稱性,可推知該方程的另一個(gè)近似根是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將正方形網(wǎng)格放置在平面直角坐標(biāo)系中,其中每個(gè)小正方形的邊長(zhǎng)均為1,△ABC經(jīng)過平移后得到△A1B1C1,若AC上一點(diǎn)P(1.2,1.4)平移后對(duì)應(yīng)點(diǎn)為P1,點(diǎn)P1繞原點(diǎn)順時(shí)針旋轉(zhuǎn)180°,對(duì)應(yīng)點(diǎn)為P2,則點(diǎn)P2的坐標(biāo)為( 。

A. (2.8,3.6) B. (﹣2.8,﹣3.6)

C. (3.8,2.6) D. (﹣3.8,﹣2.6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點(diǎn)在第一象限,且過點(diǎn)(0,1)和(﹣1,0),下列結(jié)論:①ab<0,b2>4,0<a+b+c<2,0<b<1,⑤當(dāng)x>﹣1時(shí),y>0.其中正確結(jié)論的個(gè)數(shù)是( 。

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A是反比例函數(shù)y=(x>0)的圖象上的一個(gè)動(dòng)點(diǎn),連接OA,OB⊥OA,且OB=2OA,那么經(jīng)過點(diǎn)B的反比例函數(shù)圖象的表達(dá)式為( 。

A. y=﹣ B. y= C. y=﹣ D. y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列結(jié)論:①ac>0;②a﹣b+c<0;③當(dāng)x<0時(shí),y<0;④方程ax2+bx+c=0(a≠0)有兩個(gè)大于﹣1的實(shí)數(shù)根.其中正確的結(jié)論有( 。

A. ①③ B. ②③ C. ①④ D. ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c和直線y=x+1交于A,B兩點(diǎn),點(diǎn)Ax軸上,點(diǎn)B在直線x=3上,直線x=3x軸交于點(diǎn)C

(1)求拋物線的解析式;

(2)點(diǎn)P從點(diǎn)A出發(fā),以每秒個(gè)單位長(zhǎng)度的速度沿線段AB向點(diǎn)B運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿線段CA向點(diǎn)A運(yùn)動(dòng),點(diǎn)P,Q同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).以PQ為邊作矩形PQNM,使點(diǎn)N在直線x=3上.

①當(dāng)t為何值時(shí),矩形PQNM的面積最小?并求出最小面積;

②直接寫出當(dāng)t為何值時(shí),恰好有矩形PQNM的頂點(diǎn)落在拋物線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在玩轉(zhuǎn)盤游戲時(shí),把兩個(gè)可以自由傳動(dòng)的轉(zhuǎn)盤A,B分別分成4等份,3等份的扇形區(qū)域,并在每一小區(qū)域內(nèi)標(biāo)上數(shù)字(如圖所示).游戲規(guī)則:同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止后,若指針?biāo)竷蓚(gè)區(qū)域的數(shù)字之和為奇數(shù),則甲勝;若指針?biāo)竷蓚(gè)區(qū)域的數(shù)字之和為偶數(shù),則乙勝.如果指針落在分割線上,則需要重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤.請(qǐng)問這個(gè)游戲規(guī)則對(duì)甲、乙雙方公平嗎?試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下框中是小明對(duì)一道題目的解答以及老師的批改.

題目:某村計(jì)劃建造如圖所示的矩形蔬菜溫室,要求長(zhǎng)與寬的比為2∶1,在溫室內(nèi),沿前側(cè)內(nèi)墻保留3 m的空地,其他三側(cè)內(nèi)墻各保留1 m的通道,當(dāng)溫室的長(zhǎng)與寬各為多少時(shí),矩形蔬菜種植區(qū)域的面積是288 m2?

解:設(shè)矩形蔬菜種植區(qū)域的寬為x_m,則長(zhǎng)為2xm,

根據(jù)題意,得x·2x=288.

解這個(gè)方程,得x1=-12(不合題意,舍去),x2=12,

所以溫室的長(zhǎng)為2×12+3+1=28(m),寬為12+1+1=14(m)

答:當(dāng)溫室的長(zhǎng)為28 m,寬為14 m時(shí),矩形蔬菜種植區(qū)域的面積是288 m2.

我的結(jié)果也正確!

小明發(fā)現(xiàn)他解答的結(jié)果是正確的,但是老師卻在他的解答中畫了一條橫線,并打了一個(gè)?.

結(jié)果為何正確呢?

(1)請(qǐng)指出小明解答中存在的問題,并補(bǔ)充缺少的過程:變化一下會(huì)怎樣?

(2)如圖,矩形ABCD在矩形ABCD的內(nèi)部,ABAB′,ADAD,且ADAB=2∶1,設(shè)ABAB′、BCBC′、CDCD′、DADA之間的距離分別為ab、cd,要使矩形ABCD′∽矩形ABCD,a、b、cd應(yīng)滿足什么條件?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案