【題目】下面的調(diào)查,適合用實(shí)驗(yàn)方法的是(  )
A.推薦班長候選人
B.調(diào)查同學(xué)們的生日
C.你在10秒內(nèi)能跑多少米
D.世界上發(fā)生的“禽流感”的情況

【答案】C
【解析】解:A、可以直接調(diào)查得到數(shù)據(jù);
B、可以直接調(diào)查得到數(shù)據(jù);
C、適合實(shí)驗(yàn)方法,可以直接通過實(shí)驗(yàn)實(shí)地測(cè)量;
D、可借助于報(bào)紙、信息庫等資料來查閱得到;
故選C.
實(shí)驗(yàn)方法適用于不易直接操作掌控情況,只有實(shí)地測(cè)量才能得出結(jié)果的統(tǒng)計(jì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(diǎn)(﹣1,0),對(duì)稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣,y2)、點(diǎn)C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有( 。

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠B=90°,AB=BC=3 ,CD=8,AD=10.
(1)求∠BCD的度數(shù).
(2)求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市政府大力扶持大學(xué)生創(chuàng)業(yè).李明在政府的扶持下投資銷售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):

(1)設(shè)李明每月獲得利潤為w(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤?

(2)如果李明想要每月獲得2000元的利潤,那么銷售單價(jià)應(yīng)定為多少元?

(3)根據(jù)物價(jià)部門規(guī)定,這種護(hù)眼臺(tái)燈的銷售單價(jià)不得高于32元,如果李明想要每月獲得的利潤不低于2000元,那么他每月的成本最少需要多少元?(成本=進(jìn)價(jià)×銷售量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列長度的3條線段,能構(gòu)成三角形的是( )
A.1,2,3
B.2,3,4
C.6,6,12
D.5,6,12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為解決中小學(xué)大班額問題,東營市各縣區(qū)今年將改擴(kuò)建部分中小學(xué),某縣計(jì)劃對(duì)A、B兩類學(xué)校進(jìn)行改擴(kuò)建,根據(jù)預(yù)算,改擴(kuò)建2所A類學(xué)校和3所B類學(xué)校共需資金7800萬元,改擴(kuò)建3所A類學(xué)校和1所B類學(xué)校共需資金5400萬元.

(1)改擴(kuò)建1所A類學(xué)校和1所B類學(xué)校所需資金分別是多少萬元?

(2)該縣計(jì)劃改擴(kuò)建A、B兩類學(xué)校共10所,改擴(kuò)建資金由國家財(cái)政和地方財(cái)政共同承擔(dān).若國家財(cái)政撥付資金不超過11800萬元;地方財(cái)政投入資金不少于4000萬元,其中地方財(cái)政投入到A、B兩類學(xué)校的改擴(kuò)建資金分別為每所300萬元和500萬元.請(qǐng)問共有哪幾種改擴(kuò)建方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B=45°,ADBC于點(diǎn)D,以D為圓心DC為半徑作⊙DAD于點(diǎn)G,過點(diǎn)G作⊙D的切線交AB于點(diǎn)F,且F恰好為AB中點(diǎn).

(1)求tan∠ACD的值.

(2)連結(jié)CG并延長交AB于點(diǎn)H,若AH=2,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=kx+2,當(dāng)x=-1時(shí),y=1,求此函數(shù)的表達(dá)式,并在平面直角坐標(biāo)系中畫出此函數(shù)的圖象

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以原點(diǎn)O為位似中心,作△ABC的位似圖形△A'B'C',△ABC與△A'B'C'相似比為1:3,若點(diǎn)C的坐標(biāo)為(4,1),則點(diǎn)C’的坐標(biāo)為(  )

A.12,3B.(﹣12,3)或(12,﹣3

C.(﹣12,﹣3D.12,3)或(﹣12,﹣3

查看答案和解析>>

同步練習(xí)冊(cè)答案