【題目】如圖所示,已知A點從(1,0)點出發(fā),以每秒1個單位長的速度沿著x軸的正方向運動,經(jīng)過t秒后,以O、A為頂點作菱形OABC,使B、C點都在第一象限內,且∠AOC=60°,又以P(0,4)為圓心,PC為半徑的圓恰好與OA所在的直線相切,則t=_____.
【答案】
【解析】
先根據(jù)已知條件,求出經(jīng)過t秒后,OC的長,當⊙P與OA,即與x軸相切時,如圖所示,則切點為O,此時PC=OP,過P作PE⊥OC,利用垂徑定理和解直角三角形的有關知識即可求出t的值.
∵已知A點從(1,0)點出發(fā),以每秒1個單位長的速度沿著x軸的正方向運動,
∴經(jīng)過t秒后,
∴OA=1+t,
∵四邊形OABC是菱形,
∴OC=1+t,
當⊙P與OA,即與x軸相切時,如圖所示,則切點為O,此時PC=OP,過P作PE⊥OC,
∴OE=CE= OC,
∴OE= ,
在Rt△OPE中,
OE=OPcos30°=2 ,
∴=2,
∴t=4﹣1,
故答案為:4﹣1.
科目:初中數(shù)學 來源: 題型:
【題目】新園小區(qū)計劃在一塊長為20米,寬12米的矩形場地上修建三條互相垂直的長方形甬路(一條橫向、兩條縱向,且橫向、縱向的寬度比為3:2),其余部分種花草.若要使種花草的面積達到144米2.則橫向的甬路寬為_____米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“仁愛礁”自古以來就是中國固有領海,也是中國漁民的傳統(tǒng)漁場.為了維護我國漁民合法的海洋權益,每年我“漁政海巡船”都到“仁愛礁”進行護漁活動.如圖,在島礁東西方向上,有A,B兩艘漁政船,現(xiàn)均收到我故障漁船C的求救信號.已知A,B兩船相距90(+1)海里,漁船C在船A的北偏西30°方向上,漁船C在船B的東北方向上,島礁上有一觀測點D,測得船C正好在觀測點D的北偏東15°方向上
(1)分別求出AC和AD距離(若結果有根號,請保留根號);
(2)已知距觀測點D處110海里范圍內有暗礁.為了及時營救漁船C,決定讓海巡船A去營救,若海巡船A沿直線AC去營救,途中有無觸暗礁危險?請說明理由:(參考數(shù)據(jù):≈141,≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E,F(xiàn)分別在邊BC,CD上,且BE=CF.連接AE,BF,AE與BF交于點G.下列結論錯誤的是( )
A. AE=BF B. ∠DAE=∠BFC
C. ∠AEB+∠BFC=90° D. AE⊥BF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D是以AB為直徑的半圓O上一點,連接BD,點C是的中點,過點C作直線BD的垂線,垂足為點E.
求證:(1)CE是半圓O的切線;
(2)BC2=ABBE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,拋物線y= 與x軸交于A、B兩點(點A在點B的左側),與y軸交于點C.
(1)求直線AC的解析式;
(2)如圖2,點E(a,b)是對稱軸右側拋物線上一點,過點E垂直于y軸的直線與AC交于點D(m,n).點P是x軸上的一點,點Q是該拋物線對稱軸上的一點,當a+m最大時,求點E的坐標,并直接寫出EQ+PQ+PB的最小值;
(3)如圖3,在(2)的條件下,連結OD,將△AOD沿x軸翻折得到△AOM,再將△AOM沿射線CB的方向以每秒3個單位的速度沿平移,記平移后的△AOM為△A′O'M',同時拋物線以每秒1個單位的速度沿x軸正方向平移,點B的對應點為B'.△A'B'M'能否為等腰三角形?若能,請求出所有符合條件的點M'的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠有甲種原料69千克,乙種原料52千克,現(xiàn)計劃用這兩種原料生產(chǎn)A,B兩種型號的產(chǎn)品共80件,已知每件A型號產(chǎn)品需要甲種原料0.6千克,乙種原料0.9千克;每件B型號產(chǎn)品需要甲種原料1.1千克,乙種原料0.4千克.請解答下列問題:
(1)該工廠有哪幾種生產(chǎn)方案?
(2)在這批產(chǎn)品全部售出的條件下,若1件A型號產(chǎn)品獲利35元,1件B型號產(chǎn)品獲利25元,(1)中哪種方案獲利最大?最大利潤是多少?
(3)在(2)的條件下,工廠決定將所有利潤的25%全部用于再次購進甲、乙兩種原料,要求每種原料至少購進4千克,且購進每種原料的數(shù)量均為整數(shù).若甲種原料每千克40元,乙種原料每千克60元,請直接寫出購買甲、乙兩種原料之和最多的方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】立定跳遠是體育中考選考項目之一,體育課上老師記錄了某同學的一組立定跳遠成績如表:
成績(m) | 2.3 | 2.4 | 2.5 | 2.4 | 2.4 |
則下列關于這組數(shù)據(jù)的說法,正確的是( )
A.眾數(shù)是2.3B.平均數(shù)是2.4
C.中位數(shù)是2.5D.方差是0.01
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某特產(chǎn)店出售大米,一天可銷售20袋,每袋可盈利40元,為了擴大銷售,增加盈利,盡快減少庫存,決定采取降價措施,據(jù)統(tǒng)計發(fā)現(xiàn),若每袋降價2元,平均每天可多售4袋.
(1)設每袋大米降價為x(x為偶數(shù))元時,利潤為y元,寫出y與x的函數(shù)關系式.
(2)若每天盈利1200元,則每袋應降價多少元?
(3)每袋大米降價多少元時,商店可獲最大利潤?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com