(2007•襄陽)如圖所示,兩個(gè)半圓中,長(zhǎng)為4的弦AB與直徑CD平行且與小半圓相切,則圖中陰影部分的面積是   
【答案】分析:陰影部分的面積=大半圓的面積-小半圓的面積.過O向AB作垂線OE,連接OB;再根據(jù)垂徑定理和勾股定理求解.
解答:解:過O向AB作垂線,則小圓的半徑為OE=r,BE=AE=AB=×4=2.
連接OB,則OB為大圓的半徑R,
在Rt△OEB中:
由勾股定理得:
R2-r2=BE2,
圖中陰影部分的面積是π (R2-r2)=π BE2=2π.
故答案為:2π.
點(diǎn)評(píng):本題考查了垂徑定理的應(yīng)用,兩圓的半徑,利用勾股定理計(jì)算出兩半圓的面積之差.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2007•襄陽)如圖,在平面直角坐標(biāo)系中,以點(diǎn)C(0,4)為圓心,半徑為4的圓交y軸正半軸于點(diǎn)A,AB是⊙C的切線.動(dòng)點(diǎn)P從點(diǎn)A開始沿AB方向以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),點(diǎn)Q從O點(diǎn)開始沿x軸正方向以每秒4個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),且動(dòng)點(diǎn)P、Q從點(diǎn)A和點(diǎn)O同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t(秒).
(1)當(dāng)t=1時(shí),得到P1、Q1兩點(diǎn),求經(jīng)過A、P1、Q1三點(diǎn)的拋物線解析式及對(duì)稱軸l;
(2)當(dāng)t為何值時(shí),直線PQ與⊙C相切并寫出此時(shí)點(diǎn)P和點(diǎn)Q的坐標(biāo);
(3)在(2)的條件下,拋物線對(duì)稱軸l上存在一點(diǎn)N,使NP+NQ最小,求出點(diǎn)N的坐標(biāo)并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年遼寧省大連市第55中學(xué)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2007•襄陽)如圖,在平面直角坐標(biāo)系中,以點(diǎn)C(0,4)為圓心,半徑為4的圓交y軸正半軸于點(diǎn)A,AB是⊙C的切線.動(dòng)點(diǎn)P從點(diǎn)A開始沿AB方向以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),點(diǎn)Q從O點(diǎn)開始沿x軸正方向以每秒4個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),且動(dòng)點(diǎn)P、Q從點(diǎn)A和點(diǎn)O同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t(秒).
(1)當(dāng)t=1時(shí),得到P1、Q1兩點(diǎn),求經(jīng)過A、P1、Q1三點(diǎn)的拋物線解析式及對(duì)稱軸l;
(2)當(dāng)t為何值時(shí),直線PQ與⊙C相切并寫出此時(shí)點(diǎn)P和點(diǎn)Q的坐標(biāo);
(3)在(2)的條件下,拋物線對(duì)稱軸l上存在一點(diǎn)N,使NP+NQ最小,求出點(diǎn)N的坐標(biāo)并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省蘇州市吳江市中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2007•襄陽)如圖,在平面直角坐標(biāo)系中,以點(diǎn)C(0,4)為圓心,半徑為4的圓交y軸正半軸于點(diǎn)A,AB是⊙C的切線.動(dòng)點(diǎn)P從點(diǎn)A開始沿AB方向以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),點(diǎn)Q從O點(diǎn)開始沿x軸正方向以每秒4個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),且動(dòng)點(diǎn)P、Q從點(diǎn)A和點(diǎn)O同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t(秒).
(1)當(dāng)t=1時(shí),得到P1、Q1兩點(diǎn),求經(jīng)過A、P1、Q1三點(diǎn)的拋物線解析式及對(duì)稱軸l;
(2)當(dāng)t為何值時(shí),直線PQ與⊙C相切并寫出此時(shí)點(diǎn)P和點(diǎn)Q的坐標(biāo);
(3)在(2)的條件下,拋物線對(duì)稱軸l上存在一點(diǎn)N,使NP+NQ最小,求出點(diǎn)N的坐標(biāo)并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省南通市通州區(qū)通西片一模試卷(解析版) 題型:解答題

(2007•襄陽)如圖,在平面直角坐標(biāo)系中,以點(diǎn)C(0,4)為圓心,半徑為4的圓交y軸正半軸于點(diǎn)A,AB是⊙C的切線.動(dòng)點(diǎn)P從點(diǎn)A開始沿AB方向以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),點(diǎn)Q從O點(diǎn)開始沿x軸正方向以每秒4個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),且動(dòng)點(diǎn)P、Q從點(diǎn)A和點(diǎn)O同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t(秒).
(1)當(dāng)t=1時(shí),得到P1、Q1兩點(diǎn),求經(jīng)過A、P1、Q1三點(diǎn)的拋物線解析式及對(duì)稱軸l;
(2)當(dāng)t為何值時(shí),直線PQ與⊙C相切并寫出此時(shí)點(diǎn)P和點(diǎn)Q的坐標(biāo);
(3)在(2)的條件下,拋物線對(duì)稱軸l上存在一點(diǎn)N,使NP+NQ最小,求出點(diǎn)N的坐標(biāo)并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年湖北省襄樊市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2007•襄陽)如圖,在平面直角坐標(biāo)系中,以點(diǎn)C(0,4)為圓心,半徑為4的圓交y軸正半軸于點(diǎn)A,AB是⊙C的切線.動(dòng)點(diǎn)P從點(diǎn)A開始沿AB方向以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),點(diǎn)Q從O點(diǎn)開始沿x軸正方向以每秒4個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),且動(dòng)點(diǎn)P、Q從點(diǎn)A和點(diǎn)O同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t(秒).
(1)當(dāng)t=1時(shí),得到P1、Q1兩點(diǎn),求經(jīng)過A、P1、Q1三點(diǎn)的拋物線解析式及對(duì)稱軸l;
(2)當(dāng)t為何值時(shí),直線PQ與⊙C相切并寫出此時(shí)點(diǎn)P和點(diǎn)Q的坐標(biāo);
(3)在(2)的條件下,拋物線對(duì)稱軸l上存在一點(diǎn)N,使NP+NQ最小,求出點(diǎn)N的坐標(biāo)并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案