某企業(yè)為手機(jī)產(chǎn)業(yè)基地提供手機(jī)配件,受人民幣走高的影響,從去年1至9月,該配件的原材料價(jià)格一路攀升,每件配件的原材料價(jià)格y1(元)與月份x(1≤x≤9,且x取整數(shù))之間的函數(shù)關(guān)系如下表:
月份x123456789
價(jià)格y1(元/件)565860626466687072
隨著國家調(diào)控措施的出臺,原材料價(jià)格的漲勢趨緩,10至12月每件配件的原材料價(jià)格y2(元)與月份x(10≤x≤12,且x取整數(shù))之間存在如圖所示的變化趨勢:
(1)請觀察題中的表格,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識,直接寫出y1與x之間的函數(shù)關(guān)系式,根據(jù)如圖所示的變化趨勢,直接寫出y2與x之間滿足的一次函數(shù)關(guān)系式;
(2)若去年該配件每件的售價(jià)為100元,生產(chǎn)每件配件的人力成本為5元,其它成本3元,該配件在1至9月的銷售量p1(萬件)與月份x滿足函數(shù)關(guān)系式p1=0.1x+1.1(1≤x≤9,且x取整數(shù)),10至12月的銷售量p2(萬件)與月份x滿足函數(shù)關(guān)系式p2=-0.1x+2.9(10≤x≤12,且x取整數(shù)).求去年哪個(gè)月銷售該配件的利潤最大,并求出這個(gè)最大利潤;
(3)今年1至5月,每件配件的原材料價(jià)格均比去年12月上漲6元,人力成本比去年增加20%,其它成本沒有變化,該企業(yè)將每件配件的售價(jià)在去年的基礎(chǔ)上提高a%,與此同時(shí)每月銷售量均在去年12月的基礎(chǔ)上減少8a%.這樣,在保證每月上萬件配件銷量的前提下,完成了1至5月的總利潤85萬元的任務(wù),請你計(jì)算出a的值.

【答案】分析:(1)把表格(1)中任意2點(diǎn)的坐標(biāo)代入直線解析式可得y1的解析式.把(10,73)(12,75)代入直線解析式可得y2的解析式,
(2)分情況探討得:1≤x≤9時(shí),利潤=P1×(售價(jià)-各種成本);10≤x≤12時(shí),利潤=P2×(售價(jià)-各種成本);并求得相應(yīng)的最大利潤即可;
(3)根據(jù)1至5月的總利潤85萬元得到關(guān)系式求值即可.
解答:解:(1)設(shè)y1=kx+b,
,
解得,
∴y1=2x+54(1≤x≤9,且x取整數(shù));
設(shè)y2=ax+b,則,
解得
∴y2=x+63(10≤x≤12,且x取整數(shù));
故:y1=54+2x(1≤x≤9,且x取整數(shù)),y2=63+x(10≤x≤12,且x取整數(shù)).

(2)設(shè)去年第x月的利潤為W萬元.
當(dāng)1≤x≤9,且x取整數(shù)時(shí),
W=P1(100-5-3-y1)=(0.1x+1.1)(100-5-3-54-2x)
=-0.2x2+1.6x+41.8
=-0.2(x-4)2+45,
∵1≤x≤9,
∴當(dāng)x=4時(shí),W最大=45.
當(dāng)10≤x≤12,且x取整數(shù)時(shí),
W=P2(100-5-3-y2)=(-0.1x+2.9)(100-5-3-63-x),
=0.1(x-29)2
∵10≤x≤12時(shí),且x取整數(shù)時(shí),
當(dāng)x=10時(shí),W最大=36.1.
∵45>36.1,
∴去年4月銷售該配件的利潤最大,最大利潤為45萬元.

(3)去年12月銷售量為:2.9-0.1×12=1.7(萬件).
今年原材料價(jià)格為:75+6=81(元).
今年人力成本為:5×(1+20%)=6(元).
由題意,得5×[100(1+a%)-81-6-3]×1.7(1-8a%)=85.
設(shè)t=a%,整理,得t-40t2=0,
∴t1=0(舍去)t2=
=a%,a=2.5.
答:a的值為2.5.
點(diǎn)評:本題綜合考查了一次函數(shù)和二次函數(shù)的應(yīng)用;根據(jù)二次函數(shù)的最值及相應(yīng)的取值范圍得到一定范圍內(nèi)的最大值是解決本題的易錯(cuò)點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

某企業(yè)為手機(jī)產(chǎn)業(yè)基地提供手機(jī)配件,受人民幣走高的影響,從去年1至9月,該配件的原材料價(jià)格一路攀升,每件配件的原材料價(jià)格y1(元)與月份x(1≤x≤9,且x取整數(shù))之間的函數(shù)關(guān)系如下表:
月份x 1 2 3 4 5 6 7 8 9
價(jià)格y1(元/件) 56 58 60 62 64 66 68 70 72
隨著國家調(diào)控措施的出臺,原材料價(jià)格的漲勢趨緩,10至12月每件配件的原材料價(jià)格y2(元)與月份x(10≤x≤12,且x取整數(shù))之間存在如圖所示的變化趨勢:
(1)請觀察題中的表格,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識,直接寫出y1與x之間的函數(shù)關(guān)系式,根據(jù)如圖所示的變化趨勢,直接寫出y2與x之間滿足的一次函數(shù)關(guān)系式;
(2)若去年該配件每件的售價(jià)為100元,生產(chǎn)每件配件的人力成本為5元,其它成本3元,該配件在1至9月的銷售量p1(萬件)與月份x滿足函數(shù)關(guān)系式p1=0.1x+1.1(1≤x≤9,且x取整數(shù)),10至12月的銷售量p2(萬件)與月份x滿足函數(shù)關(guān)系式p2=-0.1x+2.9(10≤x≤12,且x取整數(shù)).求去年哪個(gè)月銷售該配件的利潤最大,并求出這個(gè)最大利潤;
(3)今年1至5月,每件配件的原材料價(jià)格均比去年12月上漲6元,人力成本比去年增加20%,其它成本沒有變化,該企業(yè)將每件配件的售價(jià)在去年的基礎(chǔ)上提高a%,與此同時(shí)每月銷售量均在去年12月的基礎(chǔ)上減少8a%.這樣,在保證每月上萬件配件銷量的前提下,完成了1至5月的總利潤85萬元的任務(wù),請你計(jì)算出a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆江蘇省江陰初級中學(xué)九年級5月中考模擬數(shù)學(xué)試卷(帶解析) 題型:解答題

某企業(yè)為手機(jī)產(chǎn)業(yè)基地提供手機(jī)配件,受人民幣走高的影響,從去年1至9月,該配件的原材料價(jià)格一路攀升,每件配件的原材料價(jià)格y1(元)與月份x(1≤x≤9,且x取整數(shù))之間的函數(shù)關(guān)系如下表:

月份x
1
2
3
4
5
6
7
8
9
價(jià)格y1(元/件)
56
58
60
62
64
66
68
70
72
隨著國家調(diào)控措施的出臺,原材料價(jià)格的漲勢趨緩,10至12月每件配件的原材料價(jià)格y2(元)與月份x(10≤x≤12,且x取整數(shù))之間存在如圖所示的變化趨勢:

(1)請觀察題中的表格,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識,直接寫出y1與x之間的函數(shù)關(guān)系式,根據(jù)如圖所示的變化趨勢,直接寫出y2與x之間滿足的一次函數(shù)關(guān)系式;
(2)若去年該配件每件的售價(jià)為100元,生產(chǎn)每件配件的人力成本為5元,其它成本3元,該配件在1至9月的銷售量p1(萬件)與月份x滿足函數(shù)關(guān)系式(1≤x≤9,且x取整數(shù)),10至12月的銷售量p2(萬件)與月份x滿足函數(shù)關(guān)系式(10≤x≤12,且x取整數(shù))。求去年哪個(gè)月銷售該配件的利潤最大,并求出這個(gè)最大利潤;
(3)今年1月,每件配件的原材料價(jià)格比去年12月上漲6元,人力成本比去年增加20%,其它成本沒有變化,該企業(yè)將每件配件的售價(jià)在去年的基礎(chǔ)上提高a%,與此同時(shí)1月份銷售量在去年12月的基礎(chǔ)上減少8a%,這樣,在保證1月份上萬件配件銷量的前提下,完成了利潤17萬元的任務(wù),請你計(jì)算出a的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇漣水金城外國語中學(xué)八年級下學(xué)期期末考試數(shù)學(xué)卷(帶解析) 題型:解答題

某企業(yè)為手機(jī)產(chǎn)業(yè)基地提供手機(jī)配件,受人民幣走高的影響,從去年1至9月,該配件的原材料價(jià)格一路攀升,每件配件的原材料價(jià)格y1(元)與月份x(1≤x≤9,且x取整數(shù))之間的函數(shù)關(guān)系如下表:

月份x
1
2
3
4
5
6
7
8
9
價(jià)格y1(元/件)
56
58
60
62
64
66
68
70
72
隨著國家調(diào)控措施的出臺,原材料價(jià)格的漲勢趨緩,10至12月每件配件的原材料價(jià)格y2(元)與月份x(10≤x≤12,且x取整數(shù))之間存在如圖所示的變化趨勢:

(1)請觀察題中的表格,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識,直接寫出y1與x之間的函數(shù)關(guān)系式,根據(jù)如圖所示的變化趨勢,直接寫出y2與x之間滿足的一次函數(shù)關(guān)系式;
(2)若去年該配件每件的售價(jià)為100元,生產(chǎn)每件配件的人力成本為5元,其它成本3元,該配件在1至9月的銷售量p1(萬件)與月份x滿足函數(shù)關(guān)系式(1≤x≤9,且x取整數(shù)),10至12月的銷售量p2(萬件)與月份x滿足函數(shù)關(guān)系式(10≤x≤12,且x取整數(shù))。求去年哪個(gè)月銷售該配件的利潤最大,并求出這個(gè)最大利潤;
(3)今年1月,每件配件的原材料價(jià)格比去年12月上漲6元,人力成本比去年增加20%,其它成本沒有變化,該企業(yè)將每件配件的售價(jià)在去年的基礎(chǔ)上提高a%,與此同時(shí)1月份銷售量在去年12月的基礎(chǔ)上減少8a%,這樣,在保證1月份上萬件配件銷量的前提下,完成了利潤17萬元的任務(wù),請你計(jì)算出a的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014屆江蘇漣水金城外國語中學(xué)八年級下學(xué)期期末考試數(shù)學(xué)卷(解析版) 題型:解答題

某企業(yè)為手機(jī)產(chǎn)業(yè)基地提供手機(jī)配件,受人民幣走高的影響,從去年1至9月,該配件的原材料價(jià)格一路攀升,每件配件的原材料價(jià)格y1(元)與月份x(1≤x≤9,且x取整數(shù))之間的函數(shù)關(guān)系如下表:

月份x

1

2

3

4

5

6

7

8

9

價(jià)格y1(元/件)

56

58

60

62

64

66

68

70

72

隨著國家調(diào)控措施的出臺,原材料價(jià)格的漲勢趨緩,10至12月每件配件的原材料價(jià)格y2(元)與月份x(10≤x≤12,且x取整數(shù))之間存在如圖所示的變化趨勢:

(1)請觀察題中的表格,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識,直接寫出y1與x之間的函數(shù)關(guān)系式,根據(jù)如圖所示的變化趨勢,直接寫出y2與x之間滿足的一次函數(shù)關(guān)系式;

(2)若去年該配件每件的售價(jià)為100元,生產(chǎn)每件配件的人力成本為5元,其它成本3元,該配件在1至9月的銷售量p1(萬件)與月份x滿足函數(shù)關(guān)系式(1≤x≤9,且x取整數(shù)),10至12月的銷售量p2(萬件)與月份x滿足函數(shù)關(guān)系式(10≤x≤12,且x取整數(shù))。求去年哪個(gè)月銷售該配件的利潤最大,并求出這個(gè)最大利潤;

(3)今年1月,每件配件的原材料價(jià)格比去年12月上漲6元,人力成本比去年增加20%,其它成本沒有變化,該企業(yè)將每件配件的售價(jià)在去年的基礎(chǔ)上提高a%,與此同時(shí)1月份銷售量在去年12月的基礎(chǔ)上減少8a%,這樣,在保證1月份上萬件配件銷量的前提下,完成了利潤17萬元的任務(wù),請你計(jì)算出a的值。

 

查看答案和解析>>

同步練習(xí)冊答案