【題目】已知函數(shù)f(x)=x﹣ax(a>0,且a≠1).
(1)當a=e,x取一切非負實數(shù)時,若 ,求b的范圍;
(2)若函數(shù)f(x)存在極大值g(a),求g(a)的最小值.
【答案】
(1)解:當a=e時,f(x)=x﹣ex,
原題分離參數(shù)得 恒成立,
令g(x)= x2+x﹣ex,g′(x)=x+1﹣ex,g″(x)=1﹣ex<0,
故g′(x)在[0,+∞)遞減,g′(x)<g′(0)=0,
故g(x)在[0,+∞)遞減,
g(x)≤g(0)=﹣1,
故b≥﹣1;
(2)解:f'(x)=1﹣axlna,
①當0<a<1時,ax>0,lna<0,
所以f'(x)>0,所以f(x)在R上為單增函數(shù),無極大值;
②當a>1時,設方程f'(x)=0的根為t,
則有 ,即 ,
所以f(x)在(﹣∞,t)上為增函數(shù),在(t,+∞)上為減函數(shù),
所以f(x)的極大值為 ,
即 ,因為a>1,所以 ,
令 則 ,
設h(x)=xlnx﹣x,x>0,則 ,
令h'(x)=0,得x=1,
所以h(x)在(0,1)上為減函數(shù),在(1,+∞)上為增函數(shù),
所以h(x)得最小值為h(1)=﹣1,
即g(a)的最小值為﹣1,
此時a=e.
【解析】(1)問題轉(zhuǎn)化為 恒成立,令g(x)= x2+x﹣ex , 根據(jù)函數(shù)的單調(diào)性求出b的范圍即可;(2)求出函數(shù)的導數(shù),通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間,求出g(a)的表達式,根據(jù)函數(shù)的單調(diào)性求出g(a)的最小值即可.
【考點精析】解答此題的關(guān)鍵在于理解利用導數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識,掌握一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減,以及對函數(shù)的最大(小)值與導數(shù)的理解,了解求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形EFGH的頂點在邊長為2的正方形的邊上.若設AE=x,正方形EFGH的面積為y,則y與x的函數(shù)關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國古代數(shù)學著作《九章算術(shù)》有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升.問,米幾何?”如圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=1.5(單位:升),則輸入k的值為( )
A.4.5
B.6
C.7.5
D.9
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知橢圓Γ: 經(jīng)過點 ,且離心率為 .
(1)求橢圓Γ的方程;
(2)直線l與圓O:x2+y2=b2相切于點M,且與橢圓Γ相交于不同的兩點A,B,求|AB|的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)有四個函數(shù):①y=xsinx;②y=xcosx;③y=x|cosx|;④y=x2x的圖象(部分)如圖:
則按照從左到右圖象對應的函數(shù)序號安排正確的一組是( )
A.①④③②
B.③④②①
C.④①②③
D.①④②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,E為A1C1的中點,
(Ⅰ)證明:CE⊥平面AB1C1;
(Ⅱ)若AA1= ,∠BAC=30°,求點E到平面AB1C的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學名著,書中有如下問題:“今有五人五錢,令上二人所得與下三人等.問各得幾何?”其意思為:“現(xiàn)有甲乙丙丁戊五人依次差值等額分五錢,要使甲乙兩人所得的錢與丙丁戊三人所得的錢相等,問每人各得多少錢?”根據(jù)題意,乙得( )
A. 錢
B. 錢
C.1錢
D. 錢
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com